2,020 research outputs found

    Tests of the Gravitational Inverse-Square Law

    Full text link
    We review recent experimental tests of the gravitational inverse-square law and the wide variety of theoretical considerations that suggest the law may break down in experimentally accessible regions.Comment: 81 pages, 10 figures, submitted by permission of the Annual Review of Nuclear and Particle Science. Final version of this material is scheduled to appear in the Annual Review of Nuclear and Particle Science Vol. 53, to be published in December 2003 by Annual Reviews, http://AnnualReviews.or

    Quantum theory's last challenge

    Get PDF
    Quantum mechanics is now 100 years old and still going strong. Combining general relativity with quantum mechanics is the last hurdle to be overcome in the "quantum revolution".Comment: (9 pages, LaTex) This is the preprint version of an article that appeared in the issue 6813 (volume 408) of Nature, as part of a 3-article celebration of the 100th anniversary of Planck's solution of the black-body-radiation proble

    A phenomenological description of quantum-gravity-induced space-time noise

    Get PDF
    I propose a phenomenological description of space-time foam and discuss the experimental limits that are within reach of forthcoming experiments.Comment: 10 pages, LaTex, 1 figure. Short paper, omitting most technical details. More detailed analysis was reported in gr-qc/010400

    Increasing confidence and changing behaviors in primary care providers engaged in genetic counselling.

    Get PDF
    BackgroundScreening and counseling for genetic conditions is an increasingly important part of primary care practice, particularly given the paucity of genetic counselors in the United States. However, primary care physicians (PCPs) often have an inadequate understanding of evidence-based screening; communication approaches that encourage shared decision-making; ethical, legal, and social implication (ELSI) issues related to screening for genetic mutations; and the basics of clinical genetics. This study explored whether an interactive, web-based genetics curriculum directed at PCPs in non-academic primary care settings was superior at changing practice knowledge, attitudes, and behaviors when compared to a traditional educational approach, particularly when discussing common genetic conditions.MethodsOne hundred twenty one PCPs in California and Pennsylvania physician practices were randomized to either an Intervention Group (IG) or Control Group (CG). IG physicians completed a 6 h interactive web-based curriculum covering communication skills, basics of genetic testing, risk assessment, ELSI issues and practice behaviors. CG physicians were provided with a traditional approach to Continuing Medical Education (CME) (clinical review articles) offering equivalent information.ResultsPCPs in the Intervention Group showed greater increases in knowledge compared to the Control Group. Intervention PCPs were also more satisfied with the educational materials, and more confident in their genetics knowledge and skills compared to those receiving traditional CME materials. Intervention PCPs felt that the web-based curriculum covered medical management, genetics, and ELSI issues significantly better than did the Control Group, and in comparison with traditional curricula. The Intervention Group felt the online tools offered several advantages, and engaged in better shared decision making with standardized patients, however, there was no difference in behavior change between groups with regard to increases in ELSI discussions between PCPs and patients.ConclusionWhile our intervention was deemed more enjoyable, demonstrated significant factual learning and retention, and increased shared decision making practices, there were few differences in behavior changes around ELSI discussions. Unfortunately, barriers to implementing behavior change in clinical genetics is not unique to our intervention. Perhaps the missing element is that busy physicians need systems-level support to engage in meaningful discussions around genetics issues. The next step in promoting active engagement between doctors and patients may be to put into place the tools needed for PCPs to easily access the materials they need at the point-of-care to engage in joint discussions around clinical genetics

    PCI-SS: MISO dynamic nonlinear protein secondary structure prediction

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Since the function of a protein is largely dictated by its three dimensional configuration, determining a protein's structure is of fundamental importance to biology. Here we report on a novel approach to determining the one dimensional secondary structure of proteins (distinguishing α-helices, β-strands, and non-regular structures) from primary sequence data which makes use of Parallel Cascade Identification (PCI), a powerful technique from the field of nonlinear system identification.</p> <p>Results</p> <p>Using PSI-BLAST divergent evolutionary profiles as input data, dynamic nonlinear systems are built through a black-box approach to model the process of protein folding. Genetic algorithms (GAs) are applied in order to optimize the architectural parameters of the PCI models. The three-state prediction problem is broken down into a combination of three binary sub-problems and protein structure classifiers are built using 2 layers of PCI classifiers. Careful construction of the optimization, training, and test datasets ensures that no homology exists between any training and testing data. A detailed comparison between PCI and 9 contemporary methods is provided over a set of 125 new protein chains guaranteed to be dissimilar to all training data. Unlike other secondary structure prediction methods, here a web service is developed to provide both human- and machine-readable interfaces to PCI-based protein secondary structure prediction. This server, called PCI-SS, is available at <url>http://bioinf.sce.carleton.ca/PCISS</url>. In addition to a dynamic PHP-generated web interface for humans, a Simple Object Access Protocol (SOAP) interface is added to permit invocation of the PCI-SS service remotely. This machine-readable interface facilitates incorporation of PCI-SS into multi-faceted systems biology analysis pipelines requiring protein secondary structure information, and greatly simplifies high-throughput analyses. XML is used to represent the input protein sequence data and also to encode the resulting structure prediction in a machine-readable format. To our knowledge, this represents the only publicly available SOAP-interface for a protein secondary structure prediction service with published WSDL interface definition.</p> <p>Conclusion</p> <p>Relative to the 9 contemporary methods included in the comparison cascaded PCI classifiers perform well, however PCI finds greatest application as a consensus classifier. When PCI is used to combine a sequence-to-structure PCI-based classifier with the current leading ANN-based method, PSIPRED, the overall error rate (Q3) is maintained while the rate of occurrence of a particularly detrimental error is reduced by up to 25%. This improvement in BAD score, combined with the machine-readable SOAP web service interface makes PCI-SS particularly useful for inclusion in a tertiary structure prediction pipeline.</p

    Exactly Marginal Deformations and Global Symmetries

    Full text link
    We study the problem of finding exactly marginal deformations of N=1 superconformal field theories in four dimensions. We find that the only way a marginal chiral operator can become not exactly marginal is for it to combine with a conserved current multiplet. Additionally, we find that the space of exactly marginal deformations, also called the "conformal manifold," is the quotient of the space of marginal couplings by the complexified continuous global symmetry group. This fact explains why exactly marginal deformations are ubiquitous in N=1 theories. Our method turns the problem of enumerating exactly marginal operators into a problem in group theory, and substantially extends and simplifies the previous analysis by Leigh and Strassler. We also briefly discuss how to apply our analysis to N=2 theories in three dimensions.Comment: 23 pages, 2 figure

    On effective actions of BPS branes and their higher derivative corrections

    Get PDF
    We calculate in detail the disk level S-matrix element of one Ramond-Ramond field and three gauge field vertex operators in the world volume of BPS branes, to find four gauge field couplings to all orders of α\alpha' up to on-shell ambiguity. Then using these infinite couplings we find that the massless pole of the field theory amplitude is exactly equal to the massless pole S-matrix element of this amplitude for the p=np=n case to all orders of α\alpha'. Finally we show that the infinite massless poles and the contact terms of this amplitude for the p=n+2p=n+2 case can be reproduced by the Born-Infeld action and the Wess-Zumino actions and by their higher derivative corrections.Comment: 26 pages, 2 figures, minor corrections,references added and version published in JHE

    Eikonal methods applied to gravitational scattering amplitudes

    Full text link
    We apply factorization and eikonal methods from gauge theories to scattering amplitudes in gravity. We hypothesize that these amplitudes factor into an IR-divergent soft function and an IR-finite hard function, with the former given by the expectation value of a product of gravitational Wilson line operators. Using this approach, we show that the IR-divergent part of the n-graviton scattering amplitude is given by the exponential of the one-loop IR divergence, as originally discovered by Weinberg, with no additional subleading IR-divergent contributions in dimensional regularization.Comment: 16 pages, 3 figures; v2: title change and minor rewording (published version); v3: typos corrected in eqs.(3.2),(4.1

    Theoretical and Phenomenological Constraints on Form Factors for Radiative and Semi-Leptonic B-Meson Decays

    Full text link
    We study transition form factors for radiative and rare semi-leptonic B-meson decays into light pseudoscalar or vector mesons, combining theoretical constraints and phenomenological information from Lattice QCD, light-cone sum rules, and dispersive bounds. We pay particular attention to form factor parameterisations which are based on the so-called series expansion, and study the related systematic uncertainties on a quantitative level. In this context, we also provide the NLO corrections to the correlation function between two flavour-changing tensor currents, which enters the unitarity constraints for the coefficients in the series expansion.Comment: 52 pages; v2: normalization error in (29ff.) corrected, conclusion about relevance of unitarity bounds modified; form factor fits unaffected; references added; v3: discussion on truncation of series expansion added, matches version to be published in JHEP; v4: corrected typos in Tables 5 and

    Sunscreens - Which and what for?

    Get PDF
    It is well established that sun exposure is the main cause for the development of skin cancer. Chronic continuous UV radiation is believed to induce malignant melanoma, whereas intermittent high-dose UV exposure contributes to the occurrence of actinic keratosis as precursor lesions of squamous cell carcinoma as well as basal cell carcinoma. Not only photocarcinogenesis but also the mechanisms of photoaging have recently become apparent. In this respect the use of sunscreens seemed to prove to be more and more important and popular within the last decades. However, there is still inconsistency about the usefulness of sunscreens. Several studies show that inadequate use and incomplete UV spectrum efficacy may compromise protection more than previously expected. The sunscreen market is crowded by numerous products. Inorganic sunscreens such as zinc oxide and titanium oxide have a wide spectral range of activity compared to most of the organic sunscreen products. It is not uncommon for organic sunscreens to cause photocontact allergy, but their cosmetic acceptability is still superior to the one given by inorganic sunscreens. Recently, modern galenic approaches such as micronization and encapsulation allow the development of high-quality inorganic sunscreens. The potential systemic toxicity of organic sunscreens has lately primarily been discussed controversially in public, and several studies show contradictory results. Although a matter of debate, at present the sun protection factor (SPF) is the most reliable information for the consumer as a measure of sunscreen filter efficacy. In this context additional tests have been introduced for the evaluation of not only the protective effect against erythema but also protection against UV-induced immunological and mutational effects. Recently, combinations of UV filters with agents active in DNA repair have been introduced in order to improve photoprotection. This article reviews the efficacy of sunscreens in the prevention of epithelial and nonepithelial skin cancer, the effect on immunosuppression and the value of the SPF as well as new developments on the sunscreen market. Copyright (C) 2005 S. Karger AG, Basel
    corecore