78,010 research outputs found

    Four-quark flux distribution and binding in lattice SU(2)

    Get PDF
    The full spatial distribution of the color fields of two and four static quarks is measured in lattice SU(2) field theory at separations up to 1 fm at beta=2.4. The four-quark case is equivalent to a qbar q qbar q system in SU(2) and is relevant to meson-meson interactions. By subtracting two-body flux tubes from the four-quark distribution we isolate the flux contribution connected with the four-body binding energy. This contribution is further studied using a model for the binding energies. Lattice sum rules for two and four quarks are used to verify the results.Comment: 46 pages including 71 eps figures. 3D color figures are available at www.physics.helsinki.fi/~ppennane/pics

    The low energy expansion of the one-loop type II superstring amplitude

    Get PDF
    The one-loop four-graviton amplitude in either of the type II superstring theories is expanded in powers of the external momenta up to and including terms of order s^4 log s R^4, where R^4 denotes a specific contraction of four linearized Weyl tensors and s is a Mandelstam invariant. Terms in this series are obtained by integrating powers of the two-dimensional scalar field theory propagator over the toroidal world-sheet as well as the moduli of the torus. The values of these coefficients match expectations based on duality relations between string theory and eleven-dimensional supergravity.Comment: harvmac (b), 25 pages, 3 eps figures. v2: Factors of 2 corrected. Conclusion unchange

    Identification of the YfgF MASE1 domain as a modulator of bacterial responses to aspartate

    Get PDF
    Complex 3'-5'-cyclic diguanylic acid (c-di-GMP) responsive regulatory networks that are modulated by the action of multiple diguanylate cyclases (DGC; GGDEF domain proteins) and phosphodiesterases (PDE; EAL domain proteins) have evolved in many bacteria. YfgF proteins possess a membrane-anchoring domain (MASE1), a catalytically inactive GGDEF domain and a catalytically active EAL domain. Here, sustained expression of the Salmonella enterica spp. Enterica ser. Enteritidis YfgF protein is shown to mediate inhibition of the formation of the aspartate chemotactic ring on motility agar under aerobic conditions. This phenomenon was c-di-GMP-independent because it occurred in a Salmonella strain that lacked the ability to synthesize c-di-GMP and also when PDE activity was abolished by site-directed mutagenesis of the EAL domain. YfgF-mediated inhibition of aspartate chemotactic ring formation was impaired in the altered redox environment generated by exogenous p-benzoquinone. This ability of YfgF to inhibit the response to aspartate required a motif, (213)Lys-Lys-Glu(215), in the predicted cytoplasmic loop between trans-membrane regions 5 and 6 of the MASE1 domain. Thus, for the first time the function of a MASE1 domain as a redox-responsive regulator of bacterial responses to aspartate has been shown

    Energies of B_s meson excited states - a lattice study

    Full text link
    This is a follow-up to our earlier work on the energies and radial distributions of heavy-light mesons. The heavy quark is taken to be static (infinitely heavy) and the light quark has a mass about that of the strange quark. We now concentrate on the energies of the excited states with higher angular momentum and with a radial node. A new improvement is the use of hypercubic blocking in the time direction. The calculation is carried out with dynamical fermions on a 16 cubed times 32 lattice with a lattice spacing approximately 0.1 fm generated using a non-perturbatively improved clover action. In nature the closest equivalent of this heavy-light system is the B_s meson, which allows us to compare our lattice calculations to experimental results (where available) or to give a prediction where the excited states, particularly P-wave states, should lie. We pay special attention to the spin-orbit splitting, to see which one of the states (for a given angular momentum L) has the lower energy. An attempt is made to understand these results in terms of the Dirac equation.Comment: 35 pages. v3: Data from two new lattices added. New results in several chapter

    Combinatorics of Boundaries in String Theory

    Get PDF
    We investigate the possibility that stringy nonperturbative effects appear as holes in the world-sheet. We focus on the case of Dirichlet string theory, which we argue should be formulated differently than in previous work, and we find that the effects of boundaries are naturally weighted by e−O(1/gst)e^{-O(1/g_{\rm st})}.Comment: 12 pages, 2 figures, LaTe
    • 

    corecore