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Abstract

The one-loop four-graviton amplitude in either of the type II superstring theories is

expanded in powers of the external momenta up to and including terms of order s4 log sR4,

where R4 denotes a specific contraction of four linearized Weyl tensors and s is a Man-

delstam invariant. Terms in this series are obtained by integrating powers of the two-

dimensional scalar field theory propagator over the toroidal world-sheet as well as the

moduli of the torus. The values of these coefficients match expectations based on duality

relations between string theory and eleven-dimensional supergravity.

PACS: 04.50.+h

http://arxiv.org/abs/hep-th/9910056v2


1. Introduction

The wealth of duality symmetries relating different parameterizations of nonpertur-

bative string theory, or M theory, provide severe constraints on its structure. One striking

manifestation of this is the relationship between the low energy expansion of the type II

string theory action and one-loop effects in compactified eleven-dimensional supergravity

[1]. Although the systematics of this relationship becomes very murky at higher loops,

the leading behaviour of the two-loop contribution of the eleven-dimensional theory is

amenable to a detailed analysis (see the companion paper [2]).

This detailed comparison between string theory and eleven-dimensional supergravity

requires, among other things, detailed knowledge of the low energy expansion of the effec-

tive action of the type IIA and type IIB superstring perturbation theories. Surprisingly,

this has scarcely been considered in the literature beyond the most elementary tree-level

terms. In this paper we will obtain terms in the effective action that arise from the mo-

mentum expansion of the one-loop type II superstring theory contribution to the four

graviton amplitude. Since the four-graviton tree and one-loop amplitudes in the IIA and

IIB theories are equal we need not distinguish between the two theories in the following1.

The tree-level amplitude for the scattering of four gravitons with polarization tensors

ζ
(r)
µν and momenta kµ

r (r = 1, 2, 3, 4, µ = 0, 1, . . . , 9 and k2
r = 0) has the very simple form

[3,4]

Atree
4 = −K̂ κ2

10 e
−2φT, (1.1)

where φ is the constant dilaton field so that g = κ−1
10 e

φ is the string coupling and

T =
64

α′3stu

Γ
(

1 − α′

4 s
)

Γ
(

1 − α′

4 t
)

Γ
(

1 − α′

4 u
)

Γ
(

1 + α′

4 s
)

Γ
(

1 + α′

4 t
)

Γ
(

1 + α′

4 u
) , (1.2)

where the Mandelstam invariants are defined by s = −(k1 + k2)
2, t = −(k1 + k4)

2 and

u = −(k1 + k3)
2. The overall kinematic factor K̂ is given by

K̂ = tµ1...µ8tν1...ν8

4
∏

r=1

ζ(r)
µrνr

k(r)
µr
k(r)

νr
, (1.3)

which is the linearized approximation to the standard contraction between four curvature

tensors,

R4 = t8t8R
4 ≡ tµ1...µ8tν1...ν8

Rν1ν2
µ1µ2

· · ·Rν7ν8
µ7µ8

, (1.4)

1 The two type II string perturbation theories are equal up to and including two loops [2]
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where the tensor tµ1...µ8 is defined in [5] and in Appendix 9 of [6]2. The value of the

constant κ10 in (1.1) is arbitrary since it can be changed by shifting the dilaton field. It is

convenient to set it to the value

κ2
10 =

1

2
(2π)7α′4, (1.5)

which normalizes the D-string tension to the value TD1
= e−φTF , where TF = 1/2πα′ is

the fundamental string tension [7].

The one-loop type II superstring four-graviton scattering amplitude in ten dimensions

is also very simple and is given by [5]3

Aone−loop
4 =

κ4
10

25 π6α′4
K̂I = κ2

102π K̂ I, (1.6)

where I is the integral of a modular function,

I =

∫

F

d2τ

τ2
2

F (τ, τ̄) (1.7)

(where τ = τ1 + iτ2 and d2τ ≡ dτ1dτ2 = dτdτ̄/2) and F denotes the fundamental domain

of Sl(2,Z),

F = {|τ1| ≤
1
2
, |τ |2 ≥ 1}. (1.8)

The dynamical factor in (1.7) is given by an integral over the positions ν(i) = ν
(i)
1 + iν

(i)
2

of the four vertex operators on the torus,

F (τ, τ̄) =

∫

T

3
∏

i=1

d2ν(i)

τ2
(χ12χ34)

α′s
(χ14χ23)

α′t
(χ13χ24)

α′u

=

∫

T

3
∏

i=1

d2ν(i)

τ2
eD =

∫

T

3
∏

i=1

d2ν(i)

τ2
exp(α′s∆s + α′t∆t + α′u∆u),

(1.9)

where d2ν(i) ≡ dν
(i)
1 dν

(i)
2 , ν(4) = τ , and

D = α′s∆s + α′t∆t + α′u∆u, (1.10)

with

∆s = ln(χ12χ34), ∆t = ln(χ14χ23), ∆u = ln(χ13χ24) (1.11)

2 This contraction projects onto the purely traceless components of the curvature, which

constitute the Weyl tensor.
3 There is a factor of 2 difference in this and a few subsequent formulae compared to the first

version of this paper. We are grateful to J. Russo for pointing out these factors.
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and lnχij(ν
(1) − ν(j); τ) is the scalar Green function between the vertices labelled i and

j on the toroidal world-sheet. These Green functions are integrated over the domain T

defined by

T = {−
1

2
≤ ν1 <

1

2
, 0 ≤ ν2 < τ2} (1.12)

It is understood that the mass shell condition

s+ t+ u = 0 (1.13)

is enforced in all expressions which ensures that only conformally invariant ratios of χij ’s

arise in (1.9). For example, substituting u = −s − t the exponent of (1.9) contains

χ12χ34

χ13χ24
,

χ14χ23

χ13χ24
. (1.14)

This also ensures that the integrand is modular invariant. Many of the following formulae

will be expressed in a symmetric form in terms of s, t and u even though these variables

are related by the condition (1.13). The relative normalization between the two terms in

(1.1) and (1.7) can be determined by unitarity as in [8,4].

The tree-level string amplitude (1.1) is sufficiently simple that it is easily expanded

to all orders in powers of the momentum. Successive terms in this expansion lead to terms

in the effective action that are polynomials in derivatives acting on R4. The expansion of

T begins with the terms

T =
64

α′3stu
+ 2ζ(3) + · · · . (1.15)

Substitution of the first term in (1.1) reproduces the tree diagrams of classical ten-

dimensional N = 2 supergravity which have poles in the s, t and u channels. The second

term gives the leading correction to the supersymmetric Einstein–Hilbert theory and deter-

mines a term in the effective action proportional to R4. Subsequent terms give information

on higher derivative interactions. The complete tree-level expansion will be reviewed in

section 2.

The one-loop string amplitude (1.7) also has a remarkably simple form — the overall

kinematic factor multiplies an integral over the moduli space of the toroidal world-sheet

that is constructed entirely from the scalar world-sheet propagator. The leading contribu-

tion is proportional to R4 but the nonleading terms in the momentum expansion have not

been calculated up to now. From general principles we can anticipate that the momentum

expansion of the one-loop amplitude has the structure,

I(s, t) =a+
α′

4
Inonan 1(s, t, u) + b

α′2

16
(s2 + t2 + u2)

+ c
α′3

64
(s3 + t3 + u3) + d

α′4

256
(s4 + t4 + u4) +

α′4

256
Inonan 2(s, t, u) + · · ·

=Ian(s, t, u) + Inonan(s, t, u),

(1.16)
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where a, b, c, d, . . . are constant coefficients. Up to this order the polynomials in the Man-

delstam invariants are the unique expressions that are s, t, u symmetric. These make up

the analytic part of the amplitude, Ian(s, t, u), whereas the non-analytic threshold terms

Inonan(s, t, u) =
α′

4
Inonan 1(s, t, u) +

α′4

256
Inonan 2(s, t, u) + o(α′4), (1.17)

have logarithmic singularities. The presence of such singularities follows very simply as a

consequence of perturbative unitarity due to the phase space available for massless two-

particle intermediate states. For energies such that s < 4α′−1
(i.e., below the first massive

string threshold) the amplitude Aone−loop
4 (s, t) satisfies the unitarity relation

DiscAone−loop
4 (s, t) =

1

(2π)2

∫

d10p1d
10p2 A

tree
4 (k1, k2,−p1, p2)

(

Atree
4 (k3, k4, p1,−p2)

)†

× δ(10)(p1 + p2 − k1 − k2) θ(p
0
1)δ

(10)(p2
1)θ(p

0
2)δ

(10)(p2
2).

(1.18)

Substituting the lowest-order (Einstein–Hilbert) tree-level term from (1.15) into both fac-

tors of Atree
4 on the right-hand side of (1.18) leads immediately to the Inonan 1 term in

(1.16). Substitution of the term with coefficient ζ(3) from (1.15) into one of the factors

of Atree
4 and the Einstein–Hilbert term into the other leads to the Inonan 2 term in (1.16),

which has three extra powers of α′. These terms will be discussed in more detail in sections

3 and 4 (see also [9,10,11]).

The main purpose of this paper is to evaluate a number of terms in the expansion

(1.16). This exercise involves integrating modular invariant combinations products of the

scalar field theory propagators lnχij over the toroidal world-sheet as well as integration

over the moduli space of the torus. Although the integration of combinations of derivatives

of world-sheet scalar propagators has arisen in the literature, for example, in connection

with the elegant calculation of the elliptic genus [12], in order to perform the integrals

that arise in this paper we will need to use some tricks that that will be presented in

section 4. This will allow us to determine all the terms in (1.16) up to order α′4Inonan 2

(although the value of the coefficient d will be left as a quadruple sum). The values of

these coefficients are compared in [2] with the values that emerge by considering two-loop

eleven-dimensional supergravity compactified on a two-torus.

2. Overview of the tree amplitude

The tree amplitude for the scattering of four gravitons of momenta kµ
1 , kµ

2 , kµ
3 and

kµ
4 in either of the type II superstring theories is given by (1.1) and (1.2) where T can be

written as [5],

T =
64

α′3stu
exp

(

∞
∑

n=1

2ζ(2n+ 1)

2n+ 1

(

α′

4

)2n+1

(s2n+1 + t2n+1 + u2n+1)

)

, (2.1)
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where we have used the elementary identity ln Γ(1 − z) = γ z +
∑

n>1 ζ(n)zn/n.

It is convenient to introduce the notation σk = (α′/4)k (sk + tk +uk) (σ1 = 0), which

satisfies the recursion relation

σ3+j =
1

2
σ2σj+1 +

1

3
σ3σj , ∀j > 0. (2.2)

The solution of these conditions can be expressed by the generating function,

∞
∑

j=1

xjσj =
x2σ2 + x3σ3

1 − 1
2σ2x2 − 1

3σ3x3
= (x2σ2 + x3σ3)

∑

k≥0

xk





∑

2p+3q=k

(p+ q)!

p!q!

(σ2

2

)p (σ3

3

)q





(2.3)

Therefore

σk = k
∑

2p+3q=k

(p+ q − 1)!

p! q!

(σ2

2

)p (σ3

3

)q

. (2.4)

Since α′3stu/64 = σ3/3 and every σ2n+1 is divisible by σ3, the expansion of the

exponential in (1.1) can be expressed entirely in terms of polynomials of σ2 and σ3,

T =
3

σ3
+ 2ζ(3) + ζ(5)σ2 +

2

3
ζ(3)2σ3 +

1

2
ζ(7)(σ2)

2 +
2

3
ζ(3)ζ(5)σ2σ3 + · · · . (2.5)

It will be significant for the later discussion of unitarity that the series of powers of s, t and

u has gaps of three powers of the Mandelstam invariants between the first two terms and

two powers between the second and third terms. Each term translates into a term in the

effective action of the type IIB string theory which is the linearized version of a number

of covariant derivatives acting on R4. These higher derivative terms are part of the full

duality-invariant effective action for the type IIB string.

3. Expansion of the one-loop amplitude

In this section and the next we will consider the low energy expansion of the one-

loop integral (1.7) in powers of s, t and u. Formally, this involves expanding the integrand

F (τ, τ̄) (1.9) in powers of the scalar Feynman propagator which are then integrated over

the toroidal world-sheet,

I =

∫

F

d2τ

τ2
2

F (τ, τ̄) =

∞
∑

n=0

∫

F

d2τ

τ2
2

∫

T

3
∏

i=1

d2ν(i)

τ2

1

n!
Dn (3.1)

where the exponent is given by

D = α′s ln(χ12χ34) + α′t ln(χ14χ23) + α′u ln(χ13χ24). (3.2)
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This expansion is only formal since we already know that the amplitude is not analytic at

s = 0, t = 0 or u = 0. This lack of analyticity is manifested by divergent coefficients in

the series (3.1). One way of dealing with this problem would be to consider the expansion

in a power series around a nonzero value of s, t and u ∼ ǫ. The terms that are singular in

the ǫ→ 0 limit can then be resummed to give the logarithmic singularities.

A more straightforward procedure is to evaluate the coefficients of the derivatives of

I in the small s, t and u limit. We will therefore consider the general term,

I(m,n)
an = lim

s,t→0
(I(m,n) − I(m,n)

nonan) ≡ lim
s,t→0

(4α′−1
)m+n∂m

s ∂
n
t (I − Inonan)

= lim
s,t→0

(

∫

F

d2τ

τ2
2

∫

T

3
∏

i=1

d2ν(i)

τ2
(4∆s − 4∆u)m (4∆t − 4∆u)n exp(α′s∆s + α′t∆t + α′u∆u)

−I(m,n)
nonan

)

,

(3.3)

where ∆s, ∆t and ∆u are defined in (1.11) and I
(m,n)
nonan = (4α′−1

)m+n∂m
s ∂

n
t Inonan.

Since Inonan has logarithmic branch points the I
(m,n)
nonan terms are singular functions

of s and t which must be extracted from the complete expression, (3.3), before the analytic

terms can be determined. Since the nonanalytic terms originate, via unitarity, from the

logarithmic normal thresholds due to on-shell intermediate states we can anticipate that

they arise from the region of moduli space in which τ2 → ∞, which is the degeneration

limit of the torus. Our strategy in calculating I(m,n) will therefore be to introduce a cut-off

L at a finite but large value of τ2. The region τ2 ≤ L gives a finite contribution to I(m,n)

which includes I
(m,n)
an together with a L-dependent term. In this region the exponential

factor in the integrand on the right-hand side of (3.3) can be replaced by unity. However,

for τ2 ≥ L the exponential factor plays a crucial rôle in regulating the integral, resulting

in the terms in I
(m,n)
nonan together with another finite L-dependent piece. Dependence on L

cancels out in the full expression. These nonanalytic terms will be considered in detail in

section 3.3, section 4.3 and the appendix.

Differentiating the analytic terms in (1.16) an appropriate number of times with

respect to s and t we see that the coefficients that will be extracted from (3.3) have the

form (up to fourth order),

I(0,0)
an = a, I(1,0)

an = 0, I(2,0)
an = 4b = 2I(1,1)

an ,

I(2,1)
an = −6c, I(3,0)

an = 0, I(3,1)
an = 24d = I(2,2)

an , I(4,0)
an = 48d,

(3.4)

together with the terms obtained by interchanging s with t. The numerical values of the

coefficients a, b and c will be determined in section 4, although d will be left in the form

of a multiple sum that will not be evaluated.
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3.1. The scalar propagator on a torus

The exponent, D = α′(s∆s + t∆t + u∆u), in the expression (1.9) is a linear combi-

nation of scalar world-sheet propagators joining the locations of the four vertex operators.

The scalar propagator between two complex points, ν(i) = ν
(i)
1 +iν

(i)
2 and ν(j) = ν

(j)
1 +iν

(j)
2 ,

on a torus of modulus τ is the doubly periodic function of ν(ij) = ν(i) − ν(j) in the domain

T that has a logarithmic short distance singularity. Thus, the propagator,

P(ν(ij)|τ) = lnχij(ν
(ij), τ), (3.5)

satisfying toroidal boundary conditions can be written as a sum over image propagators

as

P(ν|τ) = −
1

2





∑

n,m∈Z

ln |ν +m+ nτ | −
∑

(m,n)6=(0,0)

ln |m+ nτ |



+
πν2

2

2τ2
, (3.6)

where the last term is the zero mode of the Laplacian. The propagator can also be expressed

as

P(ν|τ) = −
1

4
ln

∣

∣

∣

∣

θ1(ν|τ)

θ′1(0|τ)

∣

∣

∣

∣

2

+
πν2

2

2τ2

=
πν2

2

2τ2
−

1

4
ln

∣

∣

∣

∣

sin(πν)

π

∣

∣

∣

∣

2

−
∑

m≥1

(

qm

1 − qm

sin2(mπν)

m
+ c.c.

)

,

(3.7)

where q = exp(2iπτ) and θ1(ν|τ) is a standard Jacobi theta function.

Another representation of the propagator that we will use is obtained by Fourier

transforming with respect to ν, which leads to an expression in terms of the sum over the

discretized momentum mτ + n,

P(ν|τ) =
1

4π

∑

(m,n)6=(0,0)

τ2
|mτ + n|2

exp

[

2πim

(

ν1 − τ1
ν2
τ2

)

− 2πin
ν2
τ2

]

+ C(τ, τ̄)

=
1

4π

∑

(m,n)6=(0,0)

τ2
|mτ + n|2

exp

[

π

τ2
(ν̄(mτ + n) − ν(mτ̄ + n))

]

+ C(τ, τ̄).

(3.8)

The zero mode is given by

C(τ, τ̄) =
1

2
ln
∣

∣

∣
(2π)1/2η(τ)

∣

∣

∣

2

, (3.9)

where η(τ) is the standard Dedekind function.

The combination of propagators that enters the amplitude is one for which the zero

mode, C, cancels out. This is a crucial point in considering the modular invariance of the
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integrand. The group Sl(2,Z) is generated by the two elements T : τ → τ + 1, ν → ν and

S : τ → −1/τ, ν → ν/τ . Under these transformations the propagator transforms as

T : P(ν|τ + 1) = P(ν|τ)

S : P
(ν

τ

∣

∣

∣
−

1

τ

)

= P(ν|τ) +
1

2
ln |τ | ,

(3.10)

so the propagator has a modular anomaly which comes from the zero mode, C, in (3.8).

However, the sum over propagators in the exponent D is modular invariant since the zero

modes cancel after using the on-shell condition, s + t + u = 0. Therefore, it is very

convenient to use the subtracted propagator,

P̂ = ln χ̂ij(ν
(ij), τ) = P − C, (3.11)

which is modular invariant. The expression (3.8) can be written as a Poincaré series,4

P̂(ν|τ) =

∞
∑

p=1

1

p2

∑

γ∈Γ∞\Γ

ψ(γ(ν), γ(τ)), with ψ(ν, τ) =
τ2
2π

e−2iπpν̂2 (3.12)

where ν̂2 = ν2/τ2 and the Sl(2,Z) transformation acts on ν and τ by

τ →
aτ + b

cτ + d
, ν →

ν

cτ + d
, (3.13)

where a, b, c and d are integers and ad− bc = 1.

We will also need to express the propagator as a Fourier series in powers of e2iπτ1 ,

which has the form,

P̂(ν|τ) =
τ2
4π

∑

n6=0

1

n2
e2iπnν̂2 +

1

4

∑

m6=0
k∈Z

1

|m|
e2iπm(kτ1+ν1) e−2πτ2|m||k−ν̂2| (3.14)

In analyzing the singular terms in the amplitude it will be important to make use of

the leading contribution to this expression for the propagator at large values of τ2,

P̂∞(ν|τ) =
τ2
4π

∑

n6=0

1

n2
e2iπnν̂2 =

πτ2
2

(

ν̂2
2 − |ν̂2| +

1

6

)

. (3.15)

4 Recall that the Poincaré series associated with a function ψ defined over F is Tψ(τ) =
∑

γ∈Γ∞\Γ
ψ(ℑm γz) for τ = τ1 + iτ2 ∈ H = {τ2 = ℑm τ > 0} and Γ∞ =

{

±

(

1 n

0 1

)

, n ∈ Z

}

.
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3.2. The diagrammatic rules

The calculation of I(m,n) in (3.3) involves integration of powers of the propagators,

P̂(ν(ij)|τ), contracted between various combinations of the points i, j (i, j ∈ {1, 2, 3, 4})

which are the locations of the vertex operators.

It is easy to deduce a set of diagramatic rules at any given order. A term of order ∆n

(where each power of ∆ may be any of the three ∆r’s with r = s, t, u) contains a product

of n propagators which join pairs of points (which we will call ‘vertices’) i, j(= 1, . . . , 4)

with positions ν(i) that are to be integrated over the torus. We will represent each vertex

of a diagram by a dot and each propagator linking two vertices by a line. The complete

nth order contribution requires a sum over all ways in which the propagators can join the

vertices. For any term in this sum every vertex that is not connected to any propagator

contributes a factor of
∫

T
d2νi/τ2 = 1.

More generally, we need to isolate divergent contributions by dividing the τ integra-

tion domain into two regions,

F = FL + RL. (3.16)

The domain FL defines the ‘restricted’ fundamental domain of the τ plane in which τ2 ≤ L,

whereas the domain RL defines a semi-infinite rectangle in the τ plane, in which τ2 ≥ L. As

stated earlier, the terms I
(m,n)
nonan that have threshold singularities at vanishing Mandelstam

invariants arise from the domain RL and will be dealt with separately by integrating over

this large-τ2 region.

For the finite contributions that come from the domain FL the integrations over the

positions, ν(i) enforce overall conservation of the discrete momentum p = mτ + n in any

diagram. This means, for example, that any propagator with a free end-point gives a van-

ishing contribution since it has been normalized to have a vanishing zero mode. Therefore,

non-zero contributions only come from diagrams in which two or more propagators end on

every vertex. Various combinatorial factors are associated with each diagram and will be

described for each case separately.

3.3. The threshold term, Inonan

The lack of analyticity of the low energy expansion of the one-loop amplitude (1.7)

due to the logarithmic thresholds makes the integral representation (1.7) ill-defined. Since

there is no region of the Mandelstam invariants in which the amplitude is real the only way

of making sense of the integral is to decompose the integration domain into three domains,

Tst, Ttu and Tus, so that the amplitude is separated into real analytic terms that have

thresholds in the (s, t), (t, u) and (u, s) channels, respectively. The integral representation

for each of these terms can then be defined in the region of physical scattering, s > 0;

t, u < 0, by analytic continuation. For example, the (s, t) term is defined by continuation

from the region s, t < 0 (with u = −s− t > 0) where it is real. This decomposition follows

9



very naturally in an operator construction of the loop amplitude but does not manifestly

preserve modular invariance [9].

The leading logarithmic singularity in I is the leading term in lims,t→0

∫

(eD − 1).

This can be extracted by first differentiating the integral representation with respect to s,

∂sInonan 1 = lim
s,t→0

∫

F

d2τ

τ2
2

∫

T

3
∏

i=1

d2ν(i)

τ2
4∂sD eD

= lim
s,t→0

∫

F

d2τ

τ2
2

∫

T

3
∏

i=1

d2ν(i)

τ2
(4∆s − 4∆u) eD.

(3.17)

The contribution from the domain FL vanishes due to the integration over the ν(ij). How-

ever, the region RL leads to a nonzero result. In this region we can approximate D by

using the asymptotic expression for the propagator (3.15) which is proportional to τ2. In

the term with thresholds in the (s, t) channels the variables ν
(i)
2 are ordered in such a

manner that the rescaled variables,

ωi =
ν

(i)
2

τ2
, (3.18)

span the range

Tst : 0 ≤ ω1 ≤ ω2 ≤ ω3 ≤ ω4 = 1 (3.19)

(where we have used the conformal symmetry to fix ν(4) = τ). The various permutations of

this ordering are relevant in the (t, u) and (u, s) regions so that the whole range, 0 ≤ ωi ≤ 1

is covered by adding the three regions, Tst, Ttu and Tus, together. In terms of these variables

we have, in the region Tst,

D = D(s, t) = lim
τ2→∞

α′s(∆s − ∆u) + α′t(∆t − ∆u)

=α′πτ2 (sω1(ω3 − ω2) + t(ω2 − ω1)(1 − ω3))

=α′πτ2Q(s, t),

(3.20)

where

Q(s, t) = sω1(ω3 − ω2) + t(ω2 − ω1)(1 − ω3). (3.21)

Similar expressions for the functions D(t, u) = t(∆t − ∆s) + u(∆u − ∆s) and D(u, s) =

u(∆u − ∆t) + s(∆s − ∆t), define D when expressed in the Ttu and Tus regions. In the

RL domain of (3.17) the τ1 integration is trivial since the integrand has no τ1 dependence.

The τ2 integration (from L to ∞) simply gives

∂sInonan 1 =4π

∫ ∞

L

dτ2
τ2

∏

0≤ω1≤ω2≤ω3≤1

dωi ω1(ω3 − ω2) e
α′πτ2Q(s,t)

=4π

∫

∏

0≤ω1≤ω2≤ω3≤1

dωi ω1(ω3 − ω2) (−γ − ln(−α′πQ(s, t))− lnL) + o(s).

(3.22)
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The lnL terms cancel out in the complete contribution to I(1,0) = ∂sI − ∂uI. It it is easy

to integrate (3.22) together with the corresponding expression for ∂tInonan 1, giving

1

4π
Inonan 1 =

∫

∏

0≤ω1≤ω2≤ω3≤1

dωi Q(s, t) lnQ(s, t) +

∫

∏

0≤ω3≤ω2≤ω1≤1

dωi Q(t, u) lnQ(t, u)

+

∫

∏

0≤ω2≤ω1≤ω3≤1

dωi Q(u, s) lnQ(u, s).

(3.23)

The scale of the logarithm cancels out of the sum of terms in the full expression. This

threshold term is exactly the same as that obtained from the one-loop calculation of the

four-graviton amplitude in either of the type II supergravity theories in ten dimensions

[11,10]. The corresponding discussion of the higher-order threshold term, Inonan 2, which

is intrinsically stringy since it involves higher powers of α′, will be given in the appendix.

Such threshold terms are contained in the large-τ2 region of the integration over

moduli space, which means that they are contained in the coefficients I
(m,n)
RL

that are

defined by integration over the domain RL. So long as 1 < m+ n < 4 it will be sufficient

to substitute the asymptotic form of the propagator which will produce contributions of

the form,

lim
s,t→0

I
(m,n)
RL

(s, t) = lim
s,t→0

∫

RL

d2τ

τ2
2

∫

T

3
∏

i=1

d2ν(i)

τ2
(4∆s − 4∆u)m(4∆t − 4∆u)n eD

= lim
s,t→0

∫ ∞

L

dτ2τ
m+n−2
2

∫

T

3
∏

i=1

dωi (4π∂sQ)
m

(4π∂tQ)
n
eα′πτ2Q

= lim
s,t→0

(

∫ ∞

0

dτ2 −

∫ L

0

dτ2

)

τm+n−2
2

∫

T

3
∏

i=1

dωi (4π∂sQ)
m

(4π∂tQ)
n
eα′πτ2Q

= lim
s,t→0

I(m,n)
nonan(s, t) − 2 × (4π)m+n Lm+n−1

m+ n− 1

∂m
s ∂

n
t

∑

p+q=m+n

p!q!

(2m+ 2n+ 3)!
[sptq + (−1)qsp(s+ t)q + (−1)p(s+ t)ptq]

∣

∣

∣

∣

∣

(s,t)=(0,0)

,

(3.24)

with p, q ≥ 0. The L-dependent term in this expression will cancel with a term that arises

from the integration over the domain FL. When m+n = 4 it is no longer adequate to use

the leading τ2 contribution to the propagators and a sub-leading contribution of the form

lnL arises. This leads to the term Inonan 2, as will be seen in more detail in section 4.3

and the appendix.
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4. The analytic terms, I
(m,n)
an

The analytic terms are extracted from the integration over FL which is finite. In

this domain we can first perform the ν(i) integrals to obtain a density on the moduli space

and then integrate this over τ and τ̄ .

The first term in the expansion of (1.9) using (3.3) is the trivial constant term. The

result of the integrations is simply the finite volume of F . This defines the first constant

in (1.16),

I(0,0) = a =

∫

F

d2τ

τ2
2

=
π

3
, (4.1)

which is the well-known coefficient of the loop contribution to the R4 term.

The next terms in the expansion are I(1,0) and I(0,1) which are given by (3.17). As

remarked earlier, the ν(i) integrations in (3.17) cause the integrand to vanish in the domain

FL and the integral only contributes to I
(1,0)
nonan.

4.1. Terms of order s2

= A

Fig. 1: The diagram that contributes to I
(m,n)
an with m+ n = 2.

The only non-vanishing contribution to the integrand of Ian at order α′2 is the bubble

diagram of fig. 1. This term multiplies (s2 + t2 + u2) in the expansion (3.1) and therefore

contributes to I
(2,0)
an , I

(1,1)
an and I

(0,2)
an . The density on moduli space arising from fig. 1 is

A(τ, τ̄) =

∫

T

d2ν(i)d2ν(j)

τ2
2

[

ln χ̂(ν(ij)|τ)
]2

=
1

16π2

∑

(m,n)6=(0,0)

τ2
2

|mτ + n|2
=

1

16π2
Z2(τ, τ̄).

(4.2)

The function Z2 an Epstein zeta function which is an example of a non-holomorphic Eisen-

stein series5. More generally these are non-holomorphic modular functions that are also

eigenfunctions of the Laplace operator in the fundamental domain of Sl(2,Z),

∇2Zs ≡ 4τ2
2

∂2

∂τ∂τ̄
Zs = s(s− 1)Zs. (4.3)

5 This is related to the function Es in [13] by Zs = 2ζ(2s)Es.
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These functions have τ2 expansions in which there are two power-behaved terms together

with an infinite set of exponentially suppressed, non-perturbative, terms,

Zs =
∑

(m,n)6=(0,0)

τ s
2

|mτ + n|2s
= 2ζ(2s)τ s

2 +2π1/2 Γ(s− 1/2)

Γ(s)
ζ(2s−1)τ1−s

2 +O(e−2πτ2). (4.4)

Diagrams of this type with vertices at (1, 2), (3, 4), (1, 3) and (2, 4) contribute equally

to I
(2,0)
an . Integrating (4.2) over the restricted fundamental domain, FL, and summing over

these four contributions gives

I
(2,0)
FL

= 4 ×
1

π2

∫

FL

d2τ

τ2
2

Z2(τ, τ̄), (4.5)

where the factor of 4 comes from ∂2
s (s2 + t2 +(s+ t)2). This expression is easily integrated

by substituting Z2 = ∇2Z2/2 using (4.3) so that the integrand is a total derivative and

(4.5) reduces to an integral over the boundary. The restricted fundamental domain has a

single boundary which is at τ2 = L and the result is

I
(2,0)
FL

=
26 π2

6!
L+O(L−2). (4.6)

This L-dependent term cancels the corresponding L-dependence arising from I
(2,0)
RL

which is

given by (3.24). Since there is no residual L-independent piece we conclude that I
(2,0)
an = 0,

which implies that

b = 0. (4.7)

This means that there is no s2 term in the expansion (1.16).

In a similar manner it is easy to verify that the cross term I
(1,1)
an also vanishes, which

is consistent with (3.4).

4.2. Terms of order s3

= B21= B

Fig. 2: Diagrams that contribute to I
(m,n)
an with m+ n = 3.
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The diagrams in fig. 2 are the ones that survive the ν(ij) integrations. These con-

tribute to terms in the expansion (3.1) with coefficient α′3(s3 + t3 +u3). The first diagram

is the product of three propagators joining three distinct vertices and gives contributions

to the integrand of I
(2,1)
FL

(and I
(1,2)
FL

) of the form (k > j > i)

B1(τ, τ̄) =
1

(4π)3

∑

m,n

τ3
2

|mτ + n|6
=

1

(4π)3
Z3(τ, τ̄). (4.8)

This is again a non-holomorphic Eisenstein series satisfying (4.3), here with s = 3, so it is

an eigenfunction of the Laplace equation with s(s− 1) = 6. The integration of the density

(4.8) over the the restricted fundamental domain can again be performed using Gauss’ law.

This gives,

I
(2,1)
FL

(B1) = −
210 π3

3 · 8!
L2 +O(L−3), (4.9)

where the factor of −6 arises from ∂2
s∂t(s

3 + t3 − (s+ t)3).

The second diagram of fig. 2 involves only two distinct vertices and potentially gives

a contribution to the integrand of both I
(3,0)
FL

and I
(2,1)
FL

(as well as I
(0,3)
FL

and I
(1,2)
FL

) of the

form

B2(τ, τ̄) =

∫

d2ν(i)d2ν(j)

τ2
2

(

P̂(ν(ij |τ)
)3

=
1

(4π)3

∑

(m,n),(k,l),(p,q)6=(0,0)

τ3
2

δ(m+ k + p)δ(n+ l + q)

|mτ + n|2|kτ + l|2|pτ + q|2
.

(4.10)

In fact, I(3,0) involves the combination ∂3
s (s3 + t3 − (s + t)3) = 0, so it automatically

vanishes as in (1.16). However, the integrand of I(2,1) is proportional to B2.

Unlike the earlier examples, this expression is not an eigenfunction of the Laplacian

on the fundamental domain so a new idea is needed in order to perform the integration over

FL. We will make use of the well-known ‘unfolding procedure’ by using the representation

of the propagator by a Poincaré series (3.12). This relates the integral of ψ × f over F

(where ψ is any Poincaré series) to an integral over the semi-infinite line,

∫

F

d2τ

τ2
2

ψ(τ)f(τ) =

∫ ∞

t=0

dt

t2
ψ(t)(Cf)(t), (4.11)

where the expression (Cf) is the zero τ1 mode of the function f(τ),

Cf(τ2) =

∫ 1/2

−1/2

dτ1f(τ). (4.12)

14



The relationship (4.11) is derived by making use of the identities,
∫

Γ\H

∑

Γ∞\Γ

=

∫

Γ∞\H

=

∫

τ2>0

. (4.13)

Since the integration in (4.10) is over the restricted fundamental domain, FL, some care
has to be taken in using the unfolding procedure. For an integral such as (4.10), which
diverges like a power of L as L → ∞, it turns out to be consistent to simply set f(τ) = 0
for τ2 ≥ L, which cuts off the divergence at τ2 → ∞.6 Using this procedure we can express
the contribution of (4.10) to I

(2,1)
FL

in the form,

I
(2,1)
FL

(B2) = −6 ×
64

3

∫

FL

d2τ

τ2
2

B2(τ, τ̄)

= −128

∫

F

d2τ

τ2
2

∫

d2ν(1)d2ν(2)

τ2
2

(

P̂(ν(12)|τ)
)3

= −128
∞
∑

p=1

1

p2

∫ L

0

dt

t2

∫

d2ν(1)d2ν(2)

t2
t

2π
e−2iπpν̂2 C(P̂2),

(4.14)

where the overall factor of −6 comes from ∂2
s∂t(s

3 + t3 − (s+ t)3). The expression for the
integral over ν

(1)
1 and ν

(2)
1 of the zero τ1 Fourier mode is

∫

1
2

−
1
2

dν
(1)
1 dν

(2)
1 C(P2) =

t2

16π2





∑

n6=0

1

n2
e2πinν̂

(12)
2





2

+
1

16

∑

m6=0
k

1

m2
e−4πt|m||k−ν̂

(12)
2 |. (4.15)

Substituting the first term on the right-hand side into (4.14) leads to the L-dependent
term,

I
(2,1)
1FL

(B2) = −128 ×
L2

2

∫

1
2

−
1
2

dν̂
(1)
2 dν̂

(2)
2





1

4π

∑

n6=0

1

n2
e2iπnν̂

(12)
2





3

= −
L2

π3

∑

ni∈Z\{0}

δ(n1 + n2 + n3)

n2
1n

2
2n

2
3

= −
28 π3

3 · 8!
L2.

(4.16)

Substitution of the second term on the right-hand side of (4.15) into (4.14) gives the
L-independent term,

I
(2,1)
2FL

(B2) = −
4

π

∞
∑

p=1

1

p2

∫ ∞

0

dt

t

∫ 1

0

dν̂
(1)
2 dν̂

(2)
2

∑

m6=0
k

1

m2
e−2iπpν̂2e−4πt|m||k−ν̂2|

= −
4

π2

∞
∑

p=1

∑

m 6=0

1

p2

1

m2

∫ ∞

0

dt

p2 + t2
= −6 ×

2

3π
ζ(2)ζ(3).

(4.17)

6 Although this cut-off leads to the correct answer when the integral grows as a power of L,

more care is needed in regularizing logarithmic growth of the kind we will meet in section 4.3. In

that case the integral diverges at the points on the τ2 = 0 axis that are the images under SL(2,Z)

transformations of the point τ2 → ∞.
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The sum of the L-dependent terms, I
(2,1)
1FL

(B2) + I
(2,1)
FL

(B1) (see (4.16) and (4.9)),

again cancels with the corresponding term in the integration over the domain RL (I
(2,1)
RL

,

in (3.24)). However, in this case there is also a finite contribution to I
(2,1)
2FL

, which determines

the coefficient of the α′3(s3 + t3 + u3) term in (1.16) to be

c =
2

3π
ζ(2)ζ(3). (4.18)

4.3. Terms of order s4

= C43= C

1= C 2= C

Fig. 3: The set of diagrams that contribute to I(m,n) with m+ n = 4.

The four kinds of diagrams that give non-zero contributions proportional to α′4 (s4 +

t4 + u4) in the expansion (3.1) are shown in fig. 3. These each have four propagators and

contribute to I
(m,n)
an with m+ n = 4. Upon evaluating the ν(r) integrations these give the

following densities for the moduli space integrals

C1(τ, τ̄) =
1

(4π)4
(Z2)

2, (4.19)

C2(τ, τ̄) =
1

(4π)4
(Z2)

2, (4.20)

C3(τ, τ̄) =
1

(4π)4
Z4, (4.21)

C4(τ, τ̄) =

∫

d2ν(i)d2ν(j)

τ2
2

(

P̂(ν(ij)|τ)
)4

(j > i)

=
1

(4π)4

∑

(m,n)6=(0,0)
(p,q)6=(0,0)

∑

(r,s)6=(0,0)
(v,w)6=(0,0)

τ4
2

δ(m+ p+ r + v)δ(n+ q + s+ w)

|mτ + n|2|pτ + q|2|rτ + s|2|vτ + w|2
.

(4.22)
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The term C3(τ, τ̄) is once again a non-holomorphic Eisenstein series which can be

integrated over the restricted fundamental domain using,

∫

FL

d2τ

τ2
2

Z4 =
2

3
ζ(8)L3 +O(L−4). (4.23)

Inserting the appropriate combinatoric factors gives rise to the L-dependent contributions,

I(3,1)
an (C3) = 0, I(2,2)

an (C3) =
210 · 3 π4

10!
L3, I(4,0)

an (C3) =
210 · 3 π4

10!
L3. (4.24)

The integration of the expressions C2 and C3 over the restricted fundamental domain

involves the integration of the square of an Eisenstein series, (Z2)
2. This can be evaluated

by using Green’s theorem in the fundamental domain. For general real values of s, s′ > 1/2

this states that

1

4ζ(2s)ζ(2s′)

∫

FL

d2τ

τ2
2

ZsZs′ =
Ls+s′−1

s+ s′ − 1
−
L1−s−s′

s+ s′ − 1
φ(s)φ(s′)+

Ls−s′

s− s′
φ(s′)−

Ls′−s

s− s′
φ(s)+o(1),

(4.25)

where

φ(s) =
ζ(2s− 1)Γ(s− 1/2)

πs−1/2

πs

ζ(2s)Γ(s)
. (4.26)

The symbol o(1) means that the remainder goes to zero when L becomes infinite (for a

more general statement see exercise 12, page 216, of volume I of [13]). It follows from this

that
1

4ζ(4)2

∫

FL

d2τ

τ2
2

(Z2)
2 =

1

3
L3 + π

ζ(3)

ζ(4)
ln L− φ′(2). (4.27)

The last term gives a L-independent contribution to the coefficient d in (1.16). The other

terms in (4.27) give another contribution that behaves as L3 as well as a new L-dependent

term proportional to ln L. Such a term is implied by the presence of a new logarith-

mic threshold of order α′4 s4 ln s which is contained in Inonan 2 that is evaluated in the

appendix. Taking into account the combinatorial factors, the contribution of these L-

dependent terms is

I(3,1)
an (C1) = I(3,1)

an (C2) = 0

I(2,2)
an (C2) = 2I(2,2)

an (C1) =
29 · 7 π4

10!
L3 +

48

π3
ζ(3)ζ(4) ln L,

I(4,0)
an (C2) = 2I(4,0)

an (C1) =
210 · 7 π4

10!
L3 +

96

π3
ζ(3)ζ(4) ln L.

(4.28)

The last remaining term to consider is C4. As with the two-loop term (4.10) this gives

an expression which is not an eigenfunction of the Laplacian on the fundamental domain.

Once again the d2τ integration may be performed by using the unfolding procedure as
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in the previous sub-section. However, in this case we have to take greater care of the

divergence of the integrand at τ2 = L→ ∞ (as pointed out in the footnote in section 4.2).

The integral can be rendered finite by subtracting a suitable linear combination of Z4 and

Z2
2 from the integrand. Consider, for example,

I
(4,0)
FL

(C4) = 48 ×
64

3

∫

FL

d2τ

τ2
2

∫

d2ν(1)d2ν(2)

τ2
2

(

P̂(ν(12)|τ)
)4

, (4.29)

where the factor of 48 comes from ∂4
s (s4 + t4 + (s + t)4). It is easy to extract the terms

in the integrand that are divergent in the limit L → ∞ from explicit form of P̂(ν(12)|τ)

given in (3.14) and (3.15). This gives explicit L3 and lnL terms that can be subtracted in

a modular invariant manner by defining a regularized value of I(4,0)(C4),

I
(4,0)
Reg (C4) = I

(4,0)
FL

(C4) − I
(4,0)
div (C4), (4.30)

where

I
(4,0)
div (C4) = 1024

∫

FL

d2τ

τ2
2

∫

d2ν(1)d2ν(2)

τ2
2

(

−
2

(4π)4
Z4 +

3

(4π)4
(Z2)

2

)

, (4.31)

and the integrals of Z4 and Z2
2 are given in (4.23) and (4.27), respectively.

Since the expression (4.30) is finite and its integrand is modular invariant it is

straightforward to evaluate using the unfolding procedure. This gives

I
(4,0)
Reg (C4) =1024

∞
∑

p=1

1

p2

∫ L

0

dt

t2

∫

d2ν(1)d2ν(2)

t2
t

2π
e−2iπpν̂

(12)
2

[

C
(

P̂(ν(12))3
)

+2

∫

d2ν(3)d2ν(4)

t2
C
(

P̂(ν(23)) P̂(ν(34)) P̂(ν(41))
)

−
3

(4π)2

∫

d2ν(3)d2ν(4)

t2
C
(

P̂(ν(12))Z2

)

]

.

(4.32)

This term can be evaluated by using the explicit definitions of P̂ and Z2, giving the L-

independent result,

I
(4,0)
Reg (C4) = −

24

π3
ζ(3)

∑

p 6=0,n 6=0
p 6=n

ln |p− n|

p2n2

+
8

π

∑

mi 6=0, m1+m2+m3=0

ki∈Z, m1k1+m2k2+m3k3=0

1

|m1m2m3|

∞
∑

p=1

1

p2

∫ ∞

0

dt

t

∫ 1

0

dν̂
(1)
2 dν̂

(2)
2 exp

(

−2iπpν̂
(12)
2 − 2πt

3
∑

i=1

|mi||ki − ν̂
(12)
2 |

)

.

(4.33)
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The L-dependent terms are contained in

I
(4,0)
div (C4) = 2I(2,2)

an (C4) =
29 · 5 π4

10!
L3 +

48

π3
ζ(3)ζ(4) lnL−

48

π4
ζ(4)2φ′(2) . (4.34)

The L3 term is connected, as expected, to the presence of I
(4,0)
nonan 1 while the lnL term is

again connected to the appearance of I
(4,0)
nonan 2.

The sum of the L3 contributions arising in I
(4,0)
an (C1) and I

(4,0)
div (C4) indeed cancels

the contributions from the integration of I
(4,0)
nonan 1 over the RL domain in (3.24). Similarly,

the total coefficient of lnL arising in the sum of I
(2,2)
an (C1), I

(2,2)
an (C2) and I

(2,2)
an (C4) is

I
(2,2)
an ln =

96

π3
ζ(3)ζ(4) lnL, (4.35)

which will be cancelled by the presence of the new threshold term I
(2,2)
nonan 2. The general

expression for Inonan 2 is fairly complicated but we see from the appendix that at t = 0 it

reduces to

Inonan 2(s, t = 0) =
4

π3
ζ(3)ζ(4)(α′s)4

(

ln

(

α′s

L

)

+ ln

(

−
α′s

L

))

. (4.36)

Taking four s derivatives leads to the same coefficient of lnL as that in (4.35).

The finite term I
(4,0)
Reg (C4) (4.33), together with the L-independent parts of (4.34)

and I(4,0)(C2) and I(4,0)(C3) (which come from the finite last term of (4.27)), determine

the value of the coefficient d in the expansion of the loop amplitude in the form,

d = −
4

π4
ζ(4)2φ′(2) −

1

2π3
ζ(3)

∑ ln |p− n|

p2n2

+
1

6π

∑

mi 6=0, m1+m2+m3=0

ki∈Z, m1k1+m2k2+m3k3=0

1

|m1m2m3|

∞
∑

p=1

1

p2

∫ ∞

0

dt

t

∫ 1

0

dν̂
(1)
2 dν̂

(2)
2 exp

(

−2iπpν̂
(12)
2 − 2πt

3
∑

i=1

|mi||ki − ν̂
(12)
2 |

)

.

(4.37)

We have not extracted the numerical value of this complicated looking expression.

5. Summary and conclusion

In summary, we have determined the first few coefficients in the expansion (1.16) of

the four-graviton one-loop amplitude in either of the ten-dimensional type II string theories.

After explicitly subtracting the non-analytic threshold terms Inonan 1 and Inonan 2, we

found that

a =
π

3
, b = 0, c =

2

3π
ζ(2)ζ(3), (5.1)

19



and d is given by the expression (4.37) that we have not evaluated.

These coefficients give a little more insight into the structure of the low energy

expansion of four-graviton interactions in the M theory effective action. The leading term

of this type is the R4 term about which a great deal is known [14,15,16,17,18,1]. For

example, in the ten-dimensional limit corresponding to the type IIB string theory, it has

dependence on the complex coupling, Ω = C(0) + ie−φB

(where C(0) is the R ⊗ R scalar

and φB is the type IIB dilaton), that enters by an overall factor of E3/2(Ω, Ω̄), where Es

is the modular invariant Eisenstein series that is proportional to Zs (see the footnote in

section 4.1). This function has an expansion for large Ω2 (weak coupling) that begins with

the tree-level term with coefficient ζ(3) in (2.5) and is followed by a one-loop term with a

coefficient that is precisely the value of a in (5.1). There are no further perturbative terms

in the expansion but there is a precisely defined sequence of D-instanton contributions.

One method by which the exact form of the the R4 interaction was determined [1]

by calculating the one-loop contribution to four-graviton scattering in eleven-dimensional

supergravity compactified on a two-torus. Recently this method has been generalized to

evaluate the two-loop contribution in eleven-dimensional supergravity which contributes

at leading order in the low energy expansion to the D4 R4 interaction, where the notation

symbolically indicates four derivatives acting on four powers of the curvature. In the limit

that gives the ten-dimensional type IIB theory the interaction is given by a term in the

effective action density of the form [2]

ζ(5)V−5/2E 5
2
Ω, Ω̄) (s2 + t2 + u2)R4 (5.2)

(where the factors of s2, t2 and u2 represent appropriate derivatives acting on the cur-

vature tensors). In this case the modular function E5/2 has an expansion for large Ω2

(weak coupling) that begins with the tree-level term with coefficient ζ(5) in (2.5) and is

followed by a two-loop term — the one-loop contribution is absent. Again there are no fur-

ther perturbative string theory contributions but there is an infinite series of D-instanton

contributions. The vanishing of the one-loop contribution in (5.2) is confirmed by our

statement that the coefficient b in (5.1) vanishes.

The value of c in (5.1) is the coefficient of the one-loop contribution to the (s3 + t3 +

u3)R4 interaction. This is not a term which has yet been motivated from any argument

based on duality or supersymmetry. In particular, it is not yet clear how this term packages

with the tree-level ζ(3)2 term in (2.5) to make a modular invariant expression in the type

IIB limit.

More generally, one might ask whether there is a simple modular invariant expression

for the complete four-graviton amplitude that generalizes the tree amplitude (2.1). An

obvious candidate is obtained by replacing the coefficients 2ζ(2n+1) in the tree amplitude

(2.1) by τ−2n−1
2 2ζ(2n+ 1)En+1/2 [19,20]. The resulting amplitude has s, t and u-channel
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poles at values corresponding to the mass of every excited state of all the (p, q) D-strings.

This expression has been conjectured [19] to be some sort of approximation to the exact

four-graviton amplitude of the type IIB theory. It does indeed reproduce the first few of

the known coefficients in the low energy expansion: by definition, it contains the exact

tree-level amplitude and it also contains the correct ratio of the E3/2 R
4 term and the

E5/2 α
′2 (s2 + t2 + u2)R4 term. However, it produces a value for the coefficient of the

one-loop part of the α′3 (s3 + t3 + u3)R4 interaction that is twice the value of c in (5.1).

It is not surprising that the naive modular invariant conjecture of [19] fails since there is

no obvious sense in which it can approximate the exact amplitude. After all it purports

to describe an infinite number of highly unstable non-BPS states in a non-perturbative

manner but lacks all of the (massless and massive) threshold cuts that are required by

unitarity.
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Appendix A. Massless normal thresholds

The thresholds that arise from massless on-shell intermediate states come from the

region of integration over near the boundary of moduli space at which the toroidal world-

sheet pinches in such a manner that the four vertex operators are separated into two

bunches. At this degeneration point the world-sheet is the product of the two tree-level

world-sheets that enter in the right-hand side of (1.18).

In order to extract these thresholds from the expression (1.9) for the loop amplitude

it is very useful to change the definition of the moduli from ν(r) and τ to η(r) by defining

ν(1) = η(1), ν(2) = η(1) + η(2), ν(3) = η(1) + η(2) + η(3),

ν(4) = τ = η(1) + η(2) + η(3) + η(4),
(A.1)

where we have used the conformal invariance of the loop amplitude to fix ν(4) = τ . The η

variables are the ones that arise naturally in the operator construction of the loop amplitude

as a trace over a string tree. In such a construction the propagator describing each leg of

the loop is written as

∆i =
α′

2π

∫

|z|<1

dzdz̄

|z|2
zL0 z̄L̄0 , (A.2)

where z = e2πiη.
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The degeneration limit of relevance to the s-channel thresholds is the one in which
η
(1)
2 → ∞ and η

(3)
2 → ∞, which puts the two s-channel propagators in the loop on shell.

This corresponds to the region of integration Tst:

ν
(1)
2 ≤ ν

(2)
2 ≤ ν

(3)
2 ≤ ν

(4)
2 = τ2 (A.3)

with τ2 → ∞. In this limit we may substitute the asymptotic values,

∆t ∼ ∆̃t = P̂∞(ν(14)) + P̂∞(ν(23)), ∆u ∼ ∆̃u = P̂∞(ν(13)) + P̂∞(ν(24)), (A.4)

and

∆s ∼
π
(

ν
(12)
2

)2

2τ2
−

1

4
ln

∣

∣

∣

∣

sin(πν(12))

π

∣

∣

∣

∣

2

+
π
(

ν
(34)
2

)2

2τ2
−

1

4
ln

∣

∣

∣

∣

sin(πν(34))

π

∣

∣

∣

∣

2

= ∆̃s + δs,

(A.5)

where
∆̃s = P̂∞(ν(12)) + P̂∞(ν(34)), (A.6)

and
δs =

∑

m 6=0

1

4|m|

(

e2iπ(mν
(12)
1 +i|m|ν

(12)
2 ) + e2iπ(mν

(34)
1 +i|m|ν

(34)
2 )

)

. (A.7)

The sum over m in (A.5) and (A.7) gives the effect of the massive string states that
propagate between the vertices for the particles 1 and 2 or the vertices for the particles 3
and 4, i.e. in the legs of the loop that are not degenerating. These terms are the ones that
give rise to the stringy corrections to the low-energy field theory thresholds.

The contribution to the one-loop amplitude in the Tst region can be rewritten as

ITst
=

∫ ∞

RL

d2τ

τ2
2

∫

Tst

3
∏

i=1

d2ν(i)

τ2
exp

(

α′s(∆̃s − ∆̃u) + α′t(∆̃t − ∆̃u)
)

exp (α′sδs) (A.8)

The α′ expansion is obtained by expanding the last exponential in powers of δs. The leading
term reproduces the field theory s-channel threshold given by the first term in (3.23). The
next contribution, linear in δs, vanishes due to the integration over ν

(2)
1 or ν

(4)
1 . The next

term has a factor of (α′s δ)2 and gives a non-zero contribution to the logarithmic behaviour
at order (α′s)4. After a little algebra (and adding the contributions of the Ttu and Tus

domains) this gives the threshold contribution

Inonan 2(s, t,−s− t) =
∑

m 6=0

(α′s)2

32m2

∫ ∞

L

dτ2
τ2
2

∫

Tst

3
∏

i=1

dωie
α′πτ2Q(s,t)

(

e−4πmτ2(ω2−ω1) + e−4πmτ2(1−ω3)
)

+ tu term + us term,

(A.9)

where the integration variables ωi are defined in (3.18). This integral is complicated but
for the special case t = 0 it reduces to the simple expression

Inonan 2(s, 0,−s) =
4

π3
ζ(3)ζ(4)

(

α′s

4

)4(

ln

(

α′s

4L

)

+ ln

(

−
α′s

4L

))

. (A.10)
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