3,288 research outputs found

    String universality in ten dimensions

    Full text link
    We show that the N=1{\cal N}=1 supergravity theories in ten dimensions with gauge groups U(1)496U(1)^{496} and E8×U(1)248E_8 \times U(1)^{248} are not consistent quantum theories. Cancellation of anomalies cannot be made compatible with supersymmetry and abelian gauge invariance. Thus, in ten dimensions all supersymmetric theories of gravity without known inconsistencies are realized in string theory.Comment: 7 pages, 1 figure, LaTeX. v2: typos corrected on version appearing in PR

    Hydrodynamic propulsion of human sperm

    Get PDF
    The detailed fluid mechanics of sperm propulsion are fundamental to our understanding of reproduction. In this paper, we aim to model a human sperm swimming in a microscope slide chamber. We model the sperm itself by a distribution of regularized stokeslets over an ellipsoidal sperm head and along an infinitesimally thin flagellum. The slide chamber walls are modelled as parallel plates, also discretized by a distribution of regularized stokeslets. The sperm flagellar motion, used in our model, is obtained by digital microscopy of human sperm swimming in slide chambers. We compare the results of our simulation with previous numerical studies of flagellar propulsion, and compare our computations of sperm kinematics with those of the actual sperm measured by digital microscopy. We find that there is an excellent quantitative match of transverse and angular velocities between our simulations and experimental measurements of sperm. We also find a good qualitative match of longitudinal velocities and computed tracks with those measured in our experiment. Our computations of average sperm power consumption fall within the range obtained by other authors. We use the hydrodynamic model, and a prototype flagellar motion derived from experiment, as a predictive tool, and investigate how sperm kinematics are affected by changes to head morphology, as human sperm have large variability in head size and shape. Results are shown which indicate the increase in predicted straight-line velocity of the sperm as the head width is reduced and the increase in lateral movement as the head length is reduced. Predicted power consumption, however, shows a minimum close to the normal head aspect ratio

    Organic Aerosol source apportionment in London 2013 with ME-2:Exploring the solution space with annual and seasonal analysis

    Get PDF
    The multilinear engine (ME-2) factorization tool is being widely used following the recent development of the Source Finder (SoFi) interface at the Paul Scherrer Institute. However, the success of this tool, when using the <i>a</i> value approach, largely depends on the inputs (i.e. target profiles) applied as well as the experience of the user. A strategy to explore the solution space is proposed, in which the solution that best describes the organic aerosol (OA) sources is determined according to the systematic application of predefined statistical tests. This includes trilinear regression, which proves to be a useful tool for comparing different ME-2 solutions. Aerosol Chemical Speciation Monitor (ACSM) measurements were carried out at the urban background site of North Kensington, London from March to December 2013, where for the first time the behaviour of OA sources and their possible environmental implications were studied using an ACSM. Five OA sources were identified: biomass burning OA (BBOA), hydrocarbon-like OA (HOA), cooking OA (COA), semivolatile oxygenated OA (SVOOA) and low-volatility oxygenated OA (LVOOA). ME-2 analysis of the seasonal data sets (spring, summer and autumn) showed a higher variability in the OA sources that was not detected in the combined March–December data set; this variability was explored with the triangle plots <i>f</i>44 : <i>f</i>43 <i>f</i>44 : <i>f</i>60, in which a high variation of SVOOA relative to LVOOA was observed in the <i>f</i>44 : <i>f</i>43 analysis. Hence, it was possible to conclude that, when performing source apportionment to long-term measurements, important information may be lost and this analysis should be done to short periods of time, such as seasonally. Further analysis on the atmospheric implications of these OA sources was carried out, identifying evidence of the possible contribution of heavy-duty diesel vehicles to air pollution during weekdays compared to those fuelled by petrol

    Određivanje dužine korijenskog kanala: procjena CDR® intraoralnog radiografskog sustava in vivo

    Get PDF
    The Computed Dental Radiolography System® (CDR: Schick Technologies, Long Island City, NY) is a CCD-based digital intraoral radiographic device which possesses a measurement software algorithm that can be adjusted with respect to an object of known dimension. This “calibration ” algorithm was compared to the CDR® preset mode and analog film using 30 root canals in vivo. The three measurement methods differed significantly from each other for 40% o f the canals sampled. Two o f the three differed significantly for 50% o f canals. No difference existed between the methods for 10% o f the canals. Estimates of tooth length using the calibrated mode differed from those obtained using a conventional radiographic technique by an average o f 1.2 mm, while those using the calibrated mode differed by 1.9 mm. The 1.2 mm average for the calibrated CDR® was judged to be an acceptable degree o f clinical error for most root canal procedures and indicates that the calibration function of the CDR® system should be used when measuring endodontic working lengths. The results demonstrated that calibration to a 15 mm probe when using the Schick CDR® system is more consistent with a comparable measurement, if film is used as the “gold standard”, than are measurements of the tooth length using the CDR® without calibration.Sustav "Kompjuterizirane dentalne radiografije" (CDR: Schick Technologies. Long Island City. NY) je na CDD-u zasnovan uređaj za digitalnu intraoralnu radio grafiju koji posjeduje "Software-ski algoritam" za mjerenja koji se može prilagoditi prema objektu poznate veličine. Ovaj "kalibracijski" algoritam uspoređen je sa sustavom CDR (kompjutorizirane dentalne radiografije) bez mjernog algoritma i analognim filmom rabeći 30 korijenskih kanala in vivo. Tri postupka mjerenja značajno su se razlikovali u 40% mjerenih korijenskih kanala. Dva od tri postupka razlikovala su se u 50% mjerenih kanala. Nikakve razlike između postupaka nije bilo u 10% mjerenih korijenskih kanala. Procjena duljine zuba korištenjem kalibriranog načina razlikovala se od procjene dobivene konvencionalnom (analognom) radio grafskom tehnikom za otprilike 1,2 mm, dok se od digitalnog sustava bez mjernog algoritma razlikovala za prosječno 1,9 mm. Razlika od 1,2 mm za "kalibrirani CDR" se procjenjuje kao prihvatljiva klinička greška za većinu endodontskih postupaka i ukazuje da bi se "kalibracijski sustav CDRa" trebao rabiti pri mjerenju radne duljine korijenskog kanala. Rezultati ukazuju da je kalibracija sonde do 15 mm kad se rabi Schch-ov CDR sustav postojanija s usporednim mjerenjem ako se film koji se mjeri uzme kao "zlatni standard", nego je mjerenje duljine CDR sustavom bez kalibracije

    On the relationship between mathematics and visuospatial processing in Turner syndrome

    Get PDF
    A common neurocognitive phenotype of Turner syndrome (TS) includes coincident deficits in math and visuospatial reasoning while overall IQ remains intact. However, research has highlighted disparities in the relationship between these properties in women with TS, suggesting that not all visuospatial domains are equally related to mathematics in this group. Here, we present findings from a longitudinal investigation of visuospatial processing and its relationship to math performance in adolescent girls with TS and age-matched healthy controls. Participants completed a standardized battery of math and visuospatial tests once a year for 4 years. Linear mixed effects modeling was used to examine the relationship between mathematics and each visuospatial domain over time. Our results indicate that math performance was related to visual tracking, visual-motor coordination, and figure-ground processing. Such visuospatial domains appear to be uniquely affected by TS and could contribute to their deficits in math performance. Furthermore, differences in math and visuospatial test performance between girls with TS and healthy controls remain stable over time. Our results have important implications for the role of visuospatial processing in early math performance and may inform the development of effective interventions aimed at improving math education in children with TS

    Quantum effects in the quasiparticle structure of the ferromagnetic Kondo lattice model

    Full text link
    A new ``Dynamical Mean-field theory'' based approach for the Kondo lattice model with quantum spins is introduced. The inspection of exactly solvable limiting cases and several known approximation methods, namely the second-order perturbation theory, the self-consistent CPA and finally a moment-conserving decoupling of the equations of motion help in evaluating the new approach. This comprehensive investigation gives some certainty to our results: Whereas our method is somewhat limited in the investigation of the J<0-model, the results for J>0 reveal important aspects of the physics of the model: The energetically lowest states are not completely spin-polarized.A band splitting, which occurs already for relatively low interaction strengths, can be related to distinct elementary excitations, namely magnon emission (absorption) and the formation of magnetic polarons. We demonstrate the properties of the ferromagnetic Kondo lattice model in terms of spectral densities and quasiparticle densities of states.Comment: 19 pages, 4 figure

    GLSMs for non-Kahler Geometries

    Get PDF
    We identify a simple mechanism by which H-flux satisfying the modified Bianchi identity arises in garden-variety (0,2) gauged linear sigma models. Taking suitable limits leads to effective gauged linear sigma models with Green-Schwarz anomaly cancellation. We test the quantum-consistency of a class of such effective theories by constructing an off-shell superconformal algebra, providing evidence that these models run to good CFTs in the deep IR.Comment: 37 pages, Minor updates for v
    corecore