58 research outputs found

    Quasiperiodic Envelope Solitons

    Get PDF
    We analyse nonlinear wave propagation and cascaded self-focusing due to second-harmonic generation in Fibbonacci optical superlattices and introduce a novel concept of nonlinear physics, the quasiperiodic soliton, which describes spatially localized self-trapping of a quasiperiodic wave. We point out a link between the quasiperiodic soliton and partially incoherent spatial solitary waves recently generated experimentally.Comment: Submitted to PRL. 4 pages with 5 figure

    Anderson localization in metamaterials and other complex media

    Get PDF
    We review some recent (mostly ours) results on the Anderson localization of light and electron waves in complex disordered systems, including: (i) left-handed metamaterials, (ii) magneto-active optical structures, (iii) graphene superlattices, and (iv) nonlinear dielectric media. First, we demonstrate that left-handed metamaterials can significantly suppress localization of light and lead to an anomalously enhanced transmission. This suppression is essential at the long-wavelength limit in the case of normal incidence, at specific angles of oblique incidence (Brewster anomaly), and in the vicinity of the zero-epsilon or zero-mu frequencies for dispersive metamaterials. Remarkably, in disordered samples comprised of alternating normal and left-handed metamaterials, the reciprocal Lyapunov exponent and reciprocal transmittance increment can differ from each other. Second, we study magneto-active multilayered structures, which exhibit nonreciprocal localization of light depending on the direction of propagation and on the polarization. At resonant frequencies or realizations, such nonreciprocity results in effectively unidirectional transport of light. Third, we discuss the analogy between the wave propagation through multilayered samples with metamaterials and the charge transport in graphene, which enables a simple physical explanation of unusual conductive properties of disordered graphene superlatices. We predict disorder-induced resonances of the transmission coefficient at oblique incidence of the Dirac quasiparticles. Finally, we demonstrate that an interplay of nonlinearity and disorder in dielectric media can lead to bistability of individual localized states excited inside the medium at resonant frequencies. This results in nonreciprocity of the wave transmission and unidirectional transport of light.Comment: 37 pages, 30 figures, Review pape

    Nonreciprocal Anderson Localization in Magneto-Optical Random Structures

    Full text link
    We study, both analytically and numerically, disorder-induced localization of light in random layered structures with magnetooptical materials. The Anderson localization in such structures demonstrates nonreciprocal features in the averaged localization length and individual transmission resonances. We employ short-wavelength approximation where the localization effects are strong, and consider both the Faraday and Voigt magnetooptical geometries. In the Faraday geometry, the transmission is strongly nonreciprocal for the circularly polarized waves, whereas in the Voigt geometry, the nonreciprocity is much weaker, and it may appear only for the individual transmission resonances of the TM-polarized waves.Comment: 8 pages, 6 figure

    Infrared Spectroscopy of Quantum Crossbars

    Full text link
    Infrared (IR) spectroscopy can be used as an important and effective tool for probing periodic networks of quantum wires or nanotubes (quantum crossbars, QCB) at finite frequencies far from the Luttinger liquid fixed point. Plasmon excitations in QCB may be involved in resonance diffraction of incident electromagnetic waves and in optical absorption in the IR part of the spectrum. Direct absorption of external electric field in QCB strongly depends on the direction of the wave vector q.{\bf q}. This results in two types of 1D2D1D\to 2D dimensional crossover with varying angle of an incident wave or its frequency. In the case of QCB interacting with semiconductor substrate, capacitive contact between them does not destroy the Luttinger liquid character of the long wave QCB excitations. However, the dielectric losses on a substrate surface are significantly changed due to appearance of additional Landau damping. The latter is initiated by diffraction processes on QCB superlattice and manifests itself as strong but narrow absorption peaks lying below the damping region of an isolated substrate.SubmiComment: Submitted to Phys. Rev.

    Umklapp-Assisted Electron Transport Oscillations in Metal Superlattices

    Get PDF
    We consider a superlattice of parallel metal tunnel junctions with a spatially non-homogeneous probability for electrons to tunnel. In such structures tunneling can be accompanied by electron scattering that conserves energy but not momentum. In the special case of a tunneling probability that varies periodically with period aa in the longitudinal direction, i.e., perpendicular to the junctions, electron tunneling is accompanied by "umklapp" scattering, where the longitudinal momentum changes by a multiple of h/ah/a. We predict that as a result a sequence of metal-insulator transitions can be induced by an external electric- or magnetic field as the field strength is increased.Comment: 5 pages, 3 figure

    Electronic excitations and correlations in quantum bars

    No full text
    The spectrum of boson fields and two-point correlators are analyzed in a quantum bar system (a superlattice formed by two crossed interacting arrays of quantum wires), with a short-range interwire interaction. The standard bosonization procedure is shown to be valid, within the two-wave approximation. The system behaves as a sliding Luttinger liquid in the vicinity of the Γ point, but its spectral and correlation characteristics have either 1D or 2D nature depending on the direction of the wave vector in the rest of the Brillouin zone. Due to the interwire interaction, unperturbed states propagating along the two arrays of wires are always mixed, and the transverse components of the correlation functions do not vanish. This mixing is especially strong around the diagonals of the Brillouin zone, where the transverse correlators have the same order of magnitude as the longitudinal ones

    Quantum dynamics in canonical and micro-canonical ensembles. Part I. Anderson localization of electrons

    Full text link
    The new numerical approach for consideration of quantum dynamics and calculations of the average values of quantum operators and time correlation functions in the Wigner representation of quantum statistical mechanics has been developed. The time correlation functions have been presented in the form of the integral of the Weyl's symbol of considered operators and the Fourier transform of the product of matrix elements of the dynamic propagators. For the last function the integral Wigner- Liouville's type equation has been derived. The numerical procedure for solving this equation combining both molecular dynamics and Monte Carlo methods has been developed. For electrons in disordered systems of scatterers the numerical results have been obtained for series of the average values of the quantum operators including position and momentum dispersions, average energy, energy distribution function as well as for the frequency dependencies of tensor of electron conductivity and permittivity according to quantum Kubo formula. Zero or very small value of static conductivity have been considered as the manifestation of Anderson localization of electrons in 1D case. Independent evidence of Anderson localization comes from the behaviour of the calculated time dependence of position dispersion.Comment: 8 pages, 10 figure

    Soliton pinning by long-range order in aperiodic systems

    Full text link
    We investigate propagation of a kink soliton along inhomogeneous chains with two different constituents, arranged either periodically, aperiodically, or randomly. For the discrete sine-Gordon equation and the Fibonacci and Thue-Morse chains taken as examples, we have found that the phenomenology of aperiodic systems is very peculiar: On the one hand, they exhibit soliton pinning as in the random chain, although the depinning forces are clearly smaller. In addition, solitons are seen to propagate differently in the aperiodic chains than on periodic chains with large unit cells, given by approximations to the full aperiodic sequence. We show that most of these phenomena can be understood by means of simple collective coordinate arguments, with the exception of long range order effects. In the conclusion we comment on the interesting implications that our work could bring about in the field of solitons in molecular (e.g., DNA) chains.Comment: 4 pages, REVTeX 3.0 + epsf, 3 figures in accompanying PostScript file (Submitted to Phys Rev E Rapid Comm

    Short--range impurity in the vicinity of a saddle point and the levitation of the 2D delocalized states in a magnetic field

    Full text link
    The effect of a short--range impurity on the transmission through a saddle--point potential for an electron, moving in a strong magnetic field, is studied. It is demonstrated that for a random position of an impurity and random sign of its potential the impurity--induced mixing of the Landau levels diminishes {\em on average} the transmission coefficient. This results in an upward shift (levitation) of the energy position of the delocalized state in a smooth potential. The magnitude of the shift is estimated. It increases with decreasing magnetic field BB as B4B^{-4}.Comment: LaTeX, 20 page
    corecore