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This is a review of some recent (mostly ours) results on Anderson localization of light and electron

waves in complex disordered systems, including: (i) left-handed metamaterials, (ii) magnetoactive

optical structures, (iii) graphene superlattices, and (iv) nonlinear dielectric media. First, we demon-

strate that left-handed metamaterials can significantly suppress localization of light and lead to an

anomalously enhanced transmission. This suppression is essential at the long-wavelength limit in

the case of normal incidence, at specific angles of oblique incidence (Brewster anomaly), and in

vicinity of zero-e or zero-l frequencies for dispersive metamaterials. Remarkably, in disordered

samples comprised of alternating normal and left-handed metamaterials, the reciprocal Lyapunov

exponent and reciprocal transmittance increment can differ from each other. Second, we study mag-

netoactive multilayered structures, which exhibit nonreciprocal localization of light depending on

the direction of propagation and on polarization. At resonant frequencies or realizations such nonre-

ciprocity results in effectively unidirectional transport of light. Third, we discuss the analogy

between wave propagation through multilayered samples with metamaterials and charge transport

in graphene, which provides a simple physical explanation of unusual conductive properties of dis-

ordered graphene superlatices. We predict disorder-induced resonance of the transmission coeffi-

cient at oblique incidence of Dirac quasiparticles. Finally, we demonstrate that an interplay of

nonlinearity and disorder in dielectric media can lead to bistability of individual localized states

excited inside the medium at resonant frequencies. This results in nonreciprocity of wave transmis-

sion and unidirectional transport of light. VC 2012 American Institute of Physics.

[http://dx.doi.org/10.1063/1.4736617]

1. Introduction

Anderson localization is one of the most fundamental

phenomena in physics of disordered systems. Predicted in

the seminal paper1 for spin excitations, it then extended to

electrons and other one-particle excitations in solids2,3 and

classical waves,4–7 and became a paradigm of modern

physics.8 The study of this phenomenon has remained a hot

topic for more than 50 years. It is constantly stimulated by

new experimental results, including the most recent observa-

tions in microwaves,9–11 optics,12–14 and Bose–Einstein

condensates.15

Being a universal wave phenomenon, Anderson local-

ization has natural implications in novel exotic wave sys-

tems, such as photonic crystals, meta- and magnetooptical

materials, and graphene superlattices. Indeed, left-handed
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metamaterials, nonlinear and magnetooptical materials, and

graphene16–22 are involved in the design and engineering of

various multilayered structures operating in a broad spectral

range, from optical to microwave frequencies. Random

wave scattering and localization naturally appear in such

systems due to either technological imperfections or inten-

tionally designed random lattices. Importantly, exotic prop-

erties of constituent materials essentially require

consideration of the interplay of Anderson localization with

various additional effects: absorption and gain,9,23–26 polar-

ization and spin,27–30 nonlinearity,13,14,31–33 and magnetoop-

tical phenomena.34–36 In this review we describe novel

remarkable features of Anderson localization of waves in

multilayered structures composed of nonconventional mate-

rials with unique intrinsic properties.

We start our review in Sec. 2, where the basic concepts

and general formalism describing wave propagation, scat-

tering, and localization in random-layered media are intro-

duced. Anderson localization originates from interference

of multiply scattered waves, manifesting itself most pro-

foundly in one-dimensional (1D) systems, where all states

become localized.37,38 Due to one-dimensional geometry

such systems are well analyzed,2,39,40 including the mathe-

matical level of rigorousness of the results.41,42 We

describe the exact transfer matrix approach to wave propa-

gation and scattering in layered media. The main spatial

scale of localization, i.e., localization length, can be

defined in two ways: (i) via the Lyapunov exponent of a

random system and (ii) via the decrement of wave transmis-

sion dependent on the system. In the usual Anderson-

localization problems these two localization lengths coin-

cide with each other.

In Sec. 3 we consider transmission and localization

properties of multilayered H-stacks comprised of normal

materials with right-handed R-layers and mixed M-stacks,

also including left-handed L-layers with a negative refractive

index.16 The opposite signs of the phase and group velocities

in metamaterials lead to partial or complete cancellation of

phase accumulation in multilayered M-stacks. We show that

this cancellation suppresses interference of multiple scatter-

ing waves and the localization itself.43–46 Using the weak

scattering approximation (WSA)43,44 we give a detailed ana-

lytical and numerical description of transmission and local-

ization properties of both M- and H-stacks and reveal a

number of intriguing results. Namely: (i) in the long-wave

limit the localization lengths defined via the Lyapunov expo-

nent and transmission decrement differ from each other in

M-stacks, (ii) there are two ballistic regimes in the H-stacks,

(iii) essential suppression of localization is observed at spe-

cial angles in the case of oblique incidence (Brewster anom-

aly) and in vicinity of special frequencies (zero-e or zero-l
frequencies). Finally, in Sec. 3.7 we discuss anomalous

enhancement43 of wave transmission in minimally disor-

dered alternated M-stacks of metamaterials, where layer

thicknesses are equal, and only dielectric permittivities (or

only magnetic permeabilities) vary.

Section 4 is devoted to the study of novel localization

features in novel materials. We begin with a discussion of

localization of light propagating through magnetoactive mul-

tilayered structures, with either Faraday or Cotton–Mouton

(Voigt) geometries (Sec. 4.1). We show that magnetooptical

effects can significantly affect phase relations, resulting in

nonreciprocal localization depending on the direction of

wave propagation and polarization of light. At resonant fre-

quencies corresponding to the excitation of localized states

inside the sample, a nonreciprocal shift of resonance results

in effectively unidirectional transmission of light.34 In

Sec. 4.2 conducting properties of a graphene layer subject

to stratified electric field are considered. The close analogy

between charge transport in such system and wave trans-

mission through a multilayered stack47 underpins remark-

able conductive properties of disordered graphene.48 We

predict disorder-induced resonance of the transmission

coefficient at oblique incidence of electron waves. Finally,

in Sec. 4.3, we examine the interplay between nonlinearity

and disorder in resonant transmission through a random-

layered dielectric medium.31 Owing to effective energy

localization and pumping, even weak Kerr nonlinearity can

play a crucial role leading to bistability of Anderson local-

ized states inside the medium. Akin to magnetooptical

structures, this brings about unidirectional transmission

of light.

2. Random multilayered structures

2.1. Transmission length and the Lyapunov exponent

As mentioned above, 1D Anderson localization results is

exponential decay of the transmission coefficient with length

L of the sample. For multilayered systems, it is important to

use the total number of layers N and mean layer thickness

L/N. In what follows we use dimensionless variables meas-

uring all lengths in mean layer thickness units, while time

dependence is shown in the form e�ixt. For simplicity,

throughout this review we mainly consider the lossless

stacks. Detailed results concerning the case of stacks with

losses can be found in the original works.

Let us introduce the dimensionless transmission length

lN on realization that

1

lN
¼ lnjTNj

N
¼ �Re ln TN

N

and the “averaged” N-dependent dimensionless transmission

length lT: lT(N) of a multilayered N-layered stack,

1

lT
¼ � lnjTNj

N

� �
¼ � Re ln TN

N

� �
: (2.1)

Here, TN is the stack amplitude transmission coefficient

related to its transmittivity T N by the equality T N ¼ jTNj2.

Due to self-averaging of lnjTNj/N both the lengths lT and lN
tend to the same limit

lim
N!1

lT ¼ lim
N!1

lN ¼ l; (2.2)

as the number N of layers tends to infinity. Following49 we

recall l as the localization length. This localization length is

related directly to the transmission properties. Its reciprocal

value is nothing but the decrement of the stack transmission

coefficient.
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The transmission coefficient in these equations is natu-

rally expressed in terms of the total T-matrix of the stack

written on the basis of a running wave. Consider transmis-

sion of a plane wave, which is normal on the left to the stack

comprised of an even number N of layers and embedded into

free space. In the simplest case, the wave is described in

terms of two component vectors of, say, an electric field e.

Within a uniform medium with dielectric permittivity e and

magnetic permeability l, the field e has the form

eðzÞ ¼ eþeikz þ e�e�ikz; k ¼ x
c

ffiffiffiffiffi
el
p

; (2.3)

with z axis directed to the right (here and below all the

lengths in the problem are dimensionless and measured in

the mean layer thickness).

If the components of vector e are normalized in such a

way that the energy flux of the wave Eq. (2.3) is jeþj2� je�j2,

then the amplitudes,

eL;R ¼
eþL;R
e�L;R

� �
(2.4)

of the field from both sides out of the N-layer stack are

related by its transfer matrix T̂ NÞð ,

ejL ¼ T̂ NÞejR;ð (2.5)

which is expressed via transmission and reflection coeffi-

cients of the stack as

T̂ðNÞ ¼

1

TN

R�N
T�N

RN

TN

1

T�N

��������

��������
; (2.6)

where the asterisk denotes complex conjugation.

Methods of calculating the transmission coefficient

T NÞ ¼ ðT̂11Þ�1
�

(2.7)

are discussed in the next subsection.

In what follows we consider stacks composed of weak

scattering layers with reflection coefficients of each layer

much smaller than 1. In spite of this, for a sufficiently long

stack the transmission coefficient is exponentially small jTNj
� exp(�jN) with decrement coinciding with reciprocal

localization length j¼ lT
�1 (localized regime). However, a

short stack comprising a comparatively small number of

layers is almost transparent jRNj2 � 1 (ballistic regime).

Here, the transmission length takes the form

lN � b ¼ hjRN j2i
2N

; (2.8)

involving average reflectance.50 This follows directly from

Eq. (2.1) by virtue of the current conservation relationship,

jRNj2þ jTNj2¼ 1. The length b in this equation is termed the

ballistic length.

Accordingly, in studies of the transport of classical

waves in one-dimensional random systems, the following

spatial scales arise in a natural way:

• lT — transmission length of a finite sample Eq. (2.1),
• l — localization length Eq. (2.2) related to transmission

properties, and
• b — ballistic length Eq. (2.8).

Exponential decrease of the transmission coefficient

with the stack size is only a manifestation of Anderson local-

ization. The phenomenon of localization itself is the local-

ized character of eigenstates in an infinite disordered system

with sufficiently fast decaying correlations. The quantitative

characteristic of such a localization is the Lyapunov expo-

nent, which is the increment of exponential growth of the

currentless state with a given value at a certain point far

from this point. The amplitude Eq. (2.4) of the currentless

state in inhomogeneous medium in the basis of running

waves can be parameterized as,

e ¼ en eih

e�ih

� �
¼ R

eih

e�ih

� �
; (2.9)

where R(z) and h(z) are the modulus and the phase of the

considered currentless solution, respectively.

It is known2,41 that at given initial values n(0), (R(0)),

and h(0) the function n(z) at a sufficiently far point is

approximately proportional to its distance from the initial

point. In discrete terms, with probability of 1 the positive

limit exists

c ¼ lim
N!1

nðNÞ
N
¼ lim

N!1

1

N
ln

RðNÞ
R 0Þð ; (2.10)

which is called the Lyapunov exponent. Its reciprocal value

is also called localization length

ln ¼
1

c
: (2.11)

However, the index n reminds us that this localization length

is defined through the Lyapunov exponent.

To compare the two localization lengths l and ln we first

consider the continuous case where the corresponding

dynamic variable n(z) depends on the continuous coordinate

z. In this case, transmittance of the system with length L is

exactly expressed as,2,42

T L � jTLj2 ¼
4

e2ncðLÞ þ e2nSðLÞ þ 2
; (2.12)

where nc(z) and ns(z) are two independent solutions satisfy-

ing the so-called cosine and sine initial conditions hc(0)¼ 0

and h(0)¼ p/2 and having the same limiting behavior

c ¼ 1

ln
¼ lim

z!1

ncðzÞ
z
¼ lim

z!1

nSðzÞ
z

: (2.13)

Equations (2.12) and (2.13) evidently show that in the con-

tinuous case l and ln coincide exactly.
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In the discrete case (multilayered stack) the correspond-

ing expression for transmittance reads

T N �jTNj2 ¼ 4½e2ncðNÞ þ e2nSðNÞ

þ 2encðNÞþnSðNÞsinðhcðNÞ � hSðNÞÞ��1: (2.14)

Here, the last term in the denominator differs from that in

Eq. (2.12). Moreover, it can change its sign and, generally

speaking, can essentially reduce the denominator itself

thus enlarging transmittance, and as a result enlarging the

localization length ln compared to l. Thus, Eqs. (2.10) and

(2.14) enable us to state only that l	 ln in contrast to the

continuous case, where these two localization lengths

always coincide. In spite of that, the study of localization in

normal disordered multilayered stacks did not show any

difference in the two lengths. We will see below that such a

difference manifests itself truly in the alternating metama-

terial stacks.

In this review we are mainly interested in the transmis-

sion length lT. This quantity can be found directly by stand-

ard transmission experiments. At the same time, it is

sensitive to the size of the system and, therefore, is best

suited to the description of transmission properties in both

the localized and the ballistic regimes. More precisely, trans-

mission length coincides either with the localization length l
or with the ballistic length b in the case of comparatively

long stacks (localized regime) or comparatively short stacks

(ballistic regime), respectively. That is,

lT �
l; N 
 l;
b; N � b:

	

2.2. Transfer matrices and weak scattering approximation

In this subsection we describe some methods used for the

calculation of transmission length and other transmission or/

and localization characteristics in various regimes. All of them

are based on various versions of transfer matrix approach.

Consider the M-stack comprised of an even number N of

alternating uniform layers labeled by index j¼ 1,…, N from

right to left, so that all odd layers j¼ 2n� 1, are of type “a”

and all even layers j¼ 2n are of type “b,” n¼ 1,2,…, N/2

(see Fig. 1). In general the jth layer is characterized by its

dimensionless thickness dj, dielectric permittivity ej, and

magnetic permeability lj.

The total transfer matrix Eq. (2.6) is factorized to the

product

T̂ NÞ ¼ t̂N t̂N�1…t̂2 t̂1ð (2.15)

of the layer transfer matrices t̂ j:
Note that for the alternating stack under consideration it

is natural to join each pair of subsequent layers with numbers

j¼ 2n� 1 and j¼ 2n into one effective cell number n. Then

the total transfer matrix factorizes to the product of N/2

transfer matrices of separate cells.43,51–54

Parametrizing the transfer matrix of the jth layer by its

transmission tj and reflection rj coefficients of a correspond-

ing layer we obtain the recurrence relations

Tj ¼
Tj�1tj

1� Rj�1rj
; T0 ¼ 1; (2.16)

Rj ¼ rj þ
Rj�1t2j

1� Rj�1rj
; R0 ¼ 0; (2.17)

where Tj and Rj are transmission and reflection coefficients

of the reduced stack comprised only of j first layers. These

relations provide an exact description of the system and will

be used later for direct numerical simulations of its transmis-

sion properties. Another possible, but less effective way is

related to direct numerical calculation of the total transfer

matrix Eq. (2.15).

Relations (2.16) and (2.17) serve as a starting point for

the weak scattering approximation (WSA) elaborated on in

Ref. 43 and based on the assumption that reflection from a

single layer is small, i.e., jrjj � 1. This demand is definitely

satisfied in the case of weak disorder. Within WSA, instead

of exact relations (2.16) and (2.17) we use for the transmis-

sion length the following first order approximations,

ln Tj ¼ ln T1;j�1 þ ln tj þ Rj�1rj; (2.18)

Rj ¼ rj þ Rj�1t2
j ; j ¼ 2; 3;…;N: (2.19)

Note that in deriving Eq. (2.19) we omit the first-order term

R2
j�1t2j rj: This is an uncontrolled action. The omitted term

contributes only to the second order of ln Tj after the first

iteration for a not very large number of layers j. For suffi-

ciently large j the term should be taken into account. Never-

theless, as will be shown below, this approximation works

very well in the entire wavelength region.

Neglecting the last term on the right-hand side of Eq.

(2.18) results in the so-called single-scattering approxima-

tion (SSA), which implies that multi-pass reflections are

neglected, so that the total transmission coefficient is

approximated by the product of the single layer transmis-

sion coefficients, just as the total transmittance is approxi-

mated by the product of single layer transmittances, which

results in

lnjTNj ¼
XN

j¼1

lnjtjj:

In the case of very long stacks (i.e., as the length N ! 1)

we can replace the arithmetic mean, N�1
PN

j¼1 lnjtjj; by its

FIG. 1. (Ref. 43) Two-component multilayered alternative stack.
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ensemble average hln jtji. On the other hand, in this limit the

reciprocal of the transmission length coincides with the

localization length. Using the energy conservation law,

jrjj2þ jtjj2¼ 1, which applies in the absence of absorption,

the reciprocal localization length in single-scattering approx-

imation may be written as,

1

l

� �
SSA

¼ 1

2
hjrj2i

and is proportional to the mean reflectance of a single ran-

dom layer.2,55

The version of transfer matrix approach described above

is based on the consideration of a single layer embedded into

vacuum. This version and related WSA were used in Refs.

43–46 for analytical and numerical study of metamaterial

M-stacks (see Sec. 3).

Another version used in Ref. 34 (Sec. 4.1) is based on

separation of wave propagation inside a layer and through

the interface between layers (see, e.g., Ref. 56). Here, wave

propagation inside the jth layer is described by a diagonal

transfer matrix

Ŝj ¼ diag e�iuj ; e�iujÞ;
�

(2.20)

where uj¼ kjdj is the phase accumulated upon the

wave propagating from left to right through the jth layer, and

kj ¼ ðx=cÞ ffiffiffiffiffiffiffiejlj
p

: The interfaces are described by unimodu-

lar transfer matrices F̂
0a
; F̂

ab
; F̂

ba
; F̂

b0
corresponding,

respectively, to transitions (all from left to right) from vac-

uum to the medium “a,” from the medium “a” to the me-

dium “b,” from the medium “b” to the medium “a,” and

from the medium “a” into vacuum. Thus, the total transfer

matrix Eq. (2.6) of the structure in Fig. 1 is

T̂ðNÞ ¼ F̂
0a

F̂NŜNF̂N�1ŜN�1…F̂2Ŝ2F̂1Ŝ1F̂
a0
;

F̂2n�1 � F̂
ba
; F̂2n � F̂

ab
; n ¼ 1; 2;…;N=2: (2.21)

Using the group property of the interface transfer matrices:

F̂
ba ¼ F̂

b0
F̂

0a
and F̂

ab ¼ F̂
a0

F̂
0b

the total transfer matrix is

factorized to the product Eq. (2.15), where the layer transfer

matrices are

t̂2n ¼ F̂
0b

Ŝ2nF̂
b0
; t̂2n�1 ¼ F̂

0a
Ŝ2n�1F̂

a0
:

Such a representation is especially efficient in the short-

wave limit, where the total transmission coefficient is

reduced to the product of transmission coefficients of interfa-

ces only (see Ref. 56 and Sec. 4.1).

We now come to the application of the transfer matrix

approach to the calculation of the Lyapunov exponent c. For

each layer we define the currentless vector ej by Eq. (2.9)

with the corresponding values nj and hj. In these terms the

Lyapunov exponent is written as

c ¼ lim
j!1

nj

j
¼ lim

j!1
nj � nj�1Þ
�

(2.22)

(using the Stolz theorem). The vectors ej and ej�1 satisfy the

equation,

ej ¼ t̂j�1ej�1: (2.23)

Therefore, the difference in the r.h.s. of Eq. (2.22) is some

function of hj�1 is

nj � nj�1 ¼ U hj�1Þ;
�

(2.24)

the explicit form of which is determined by Eq. (2.23). Using

self averaging of the ratio nj/j and the fact that the phase hj

stabilizes,2 we finally obtain the Lyapunov exponent,

c¼hU hÞist;ð (2.25)

where the average in the r.h.s. is taken over the stationary

distribution of the phase h.

A continuous version of this result was obtained in Ref.

2 (see Eq. (10.2)). Its discrete version in slightly different

terms (see Sec. 3.7) was obtained in Ref. 57. Note that due

to the existence of the closed formula (2.25) for the Lyapu-

nov exponent the task of analytical calculation of the local-

ization length ln¼ c�1 is a simpler problem than that of the

transmission length lT.

The following steps are standard (see, e.g., Refs. 2 and

58): using Eq. (2.23) to get the dynamic equation for the

phase h, write down the corresponding Fokker–Planck equa-

tion for its distribution, solve it, and calculate the average

Eq. (2.25). Moreover, in weakly disordered systems only the

first and the second order terms should be accounted for in

the dynamic equations.2,59 For minimally disordered M-

stacks defined in Sec. 1 this program was successfully real-

ized in Refs. 51 and 52 (see Sec. 3.7 below).

3. Suppression of localization in metamaterials

Over the past decade the physical properties of metama-

terials and their possible applications in modern optics and

microelectronics have received considerable attention (e.g.,

see Refs. 7, 18, 60, and 61). The reasons for such interest are

the unique physical properties of metamaterials, including

their ability to overcome the diffraction limit,16,17 potential

role in cloaking,62 suppression of spontaneous emission

rate,63 enhancement of quantum interference,64 etc. One of

the first studies of the effect of randomness65 revealed that

weak microscopic disorder may lead to a substantial sup-

pression of wave propagation through magnetic metamateri-

als over a wide range of frequencies. Therefore, the next

problem was to study localization properties of disordered

metamaterial systems.

It is known that in normal multilayered systems com-

prising right-handed media the localization length is propor-

tional to the square of the wavelength k in the long-

wavelength limit, that it tends to a constant in a short-

wavelength regime, and oscillates irregularly in the interme-

diate region.4,6,49,66,67 Naturally, the question arises: how

inclusion of metamaterial layers influences the localization

and transmission effects.

The study of localization in metamaterials was started in

Ref. 68, where wave transmission through an alternating
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sequence of air layers and metamaterial layers of random

thicknesses was studied. Localized modes within the gap

were observed, and delocalized modes were revealed despite

one-dimensional nature of the model. Then, a comprehen-

sive study of transmission properties of M-stacks was

conducted.43–46 Here, anomalous enhancement of transmis-

sion through minimally disordered (see Sec. 1) M-stacks was

revealed,43 non-coincidence of the two localization lengths l
and ln was established,44 polarization45 and dispersion46

effects in transmission were studied.

Scaling laws of transmission through a similar mixed

multilayered structure were investigated in Ref. 69. It was

shown that spectrally averaged transmission in a frequency

range around the fully transparent resonant mode decayed

with the number of layers much more rapidly than in a ran-

dom homogeneous slab. Localization in a disordered multi-

layered structure comprised of alternating random layers of

two different left-handed materials was considered in Ref.

70. Within the propagation gap, the localization length was

shorter than the decay length in the underlying periodic

structure (opposite of that observed in the random structure

of right-handed layers).

A detailed investigation of the Lyapunov exponent (and,

therefore, localization length ln) in various multilayered meta-

materials is presented in Refs. 51–54. In the weak disorder

limit, explicit expressions for the Lyapunov exponent valid in

the entire region of wavelengths for various kinds of corre-

lated disorders were obtained,53,54 and an analytical explana-

tion of anomalous suppression of localization was found.51,52

Dispersion effects in M-stacks comprised by metamate-

rial layers separated by air layers with only positional disor-

der were considered in Refs. 71–73. Here, essential

suppression of localization in vicinity of the Brewster angle

and at the very edge of the band gap was revealed,71 influ-

ence of both quasi-periodicity and structural disorder was

studied,72 and effects of some types of disorder correlation

on light propagation and Anderson localization were

investigated.73

In this section we consider suppression of localization in

sufficiently disordered M-stacks. In the first four subsections

we consider the model with noncorrelated fluctuating thick-

nesses and dielectric permittivities. This model possesses the

main features caused by the presence of metamaterials and

at the same time remains comparatively simple. The results

concerning disorder correlations can be found in papers

mentioned in the previous paragraph and a recent detailed

survey.40 The presentation is mostly based on works.43–46,52

3.1. Model

We start with the model described at the beginning of

Sec. 2.2 and displayed in Fig. 1. Electromagnetic properties

of the jth layer with given dielectric permittivity ej and mag-

netic permeability lj are characterized by its impedance Zj

and refractive index �j,

Zj ¼
ffiffiffiffiffiffiffiffiffiffi
lj=ej

q
; �j ¼

ffiffiffiffiffiffiffi
ljej

p
: (3.1)

Being embedded into vacuum, each layer can be described

by its reflection and transmission coefficients with respect to

a wave with dimensionless length k incident from the left

rj ¼
qjð1� e2ibjÞ
1� q2

j e2ibj
; tj ¼

ð1� q2
j Þeibj

1� q2
j e2ibj

: (3.2)

Here, qj¼ (Zj� 1)/(Zjþ 1) is the Fresnel coefficient,

bj¼ kdj�j, and k¼ 2p/k is dimensionless wavenumber.

Within our model, dielectric permittivity, magnetic per-

meability, and thickness of the jth layer have the form,

ej ¼ ð�1Þjð1þ dð�Þj Þ
2; lj ¼ ð�1Þj; dj ¼ 1þ dðdÞj ; (3.3)

so that the corresponding impedance and refractive index

are

Zj ¼
ffiffiffiffiffiffiffiffiffiffi
lj=ej

q
¼ ð1þ dð�Þj Þ

�1; (3.4)

�j ¼ ð�1Þjð1þ dð�Þj Þ: (3.5)

Thickness fluctuations dj
(d) are independent, identically dis-

tributed zero-mean random variables, as well as all refrac-

tive index fluctuations dj
(�). To justify the weak scattering

approximation we assume that all these quantities dj
(d,�) are

small.

The considered model possesses some symmetry: statis-

tical properties of fluctuations and the absorption coefficient

are the same for L and R layers. As a consequence of this

symmetry, the scattering coefficients of R and L layers are

complex conjugate tr ¼ t�l and rr ¼ r�l , resulting in the

relations,

hgðtrÞi ¼ hgðtlÞi�; hgðrrÞi ¼ hgðrlÞi� (3.6)

valid for any real value function g in either the lossless or

the absorbing case. In more general models this symmetry

can be broken.

The model with two parameters (here, thickness and

refractive index) is in a sense the simplest sufficiently disor-

dered model. Further simplification, where only one of these

quantities is random, qualitatively changes the picture. Indeed,

the case of an M-stack with only thickness disorder in the ab-

sence of absorption is rather trivial: such a stack is completely

transparent (a consequence of Zj: 1). On the other hand, an

M-stack with only refractive-index disorder, as it was revealed

in Ref. 43, manifests dramatic suppression of Anderson local-

ization: essential enlightenment in the long-wave region.

This intriguing case is considered below in Sec. 3.7. Here we

focus on the case where both types of disorder are present

simultaneously.

Specific features of transmission and localization in M-

stacks look more pronounced in comparison to those of ho-

mogeneous stacks (H-stacks), comprised of solely either

right-handed or left-handed layers. Therefore, albeit local-

ization in disordered H-stacks with right-handed layers has

been studied by many authors,6,26,49,66,74 we also consider

this problem here in its most general formulation. This con-

sideration enables us to compare localization properties of

M- and H-stacks. To describe an H-stack composed of only

R (L) layers, all the multipliers (�1)j in Eqs. (3.3) and (3.5)

should be replaced with 1 (–1).

Low Temp. Phys. 38 (7), July 2012 Gredeskul et al. 575

Downloaded 06 Aug 2012 to 132.72.138.1. Redistribution subject to AIP license or copyright; see http://ltp.aip.org/about/rights_and_permissions



3.2. Mixed stack

Within the version Eqs. (2.18) and (2.19) of weak scat-

tering approximation, contributions from even and odd

layers are separated. As a result, transmission length of a fi-

nite length M-stack may be cast in the form44

1

lN
¼ 1

l
þ 1

b
� 1

l

� �
f ðN=lÞ; (3.7)

where

f ðxÞ ¼ 1� e�x

x
: (3.8)

Localization length l, ballistic length b, and crossover length
l are completely described by the three averages hln jtji, hri,
and ht2i, composed of transmission t and reflection r coeffi-

cients of a single right-handed layer

1

l
¼ �hln jtji � jhrij

2 þ Reðhri2ht2i�Þ
1� jht2ij2

; (3.9)

1

b
¼ 1

l
� 2=l

1� expð�2=lÞ
� jhrij2 þ Reðhri2ht2i�Þ

1� jht2ij2
� jhrij

2

2

 !
;

l ¼ � 1

ln jht2ij : (3:10)

Equations (3.7)–(3.10) are valid in the presence of absorp-

tion. However, below, to make our treatment more transpar-

ent, we consider the lossless case.

The characteristic lengths l, b, and l are functions of

wavelength k. The first two always satisfy the inequality

(k)> b(k), while in the long-wavelength region the crossover

length is the shortest of the three, b(k)> l(k). In the case of a

fixed wavelength k, for comparatively short stacks with N
� l(k) the function f(N, l)� 1, while for sufficiently long

stacks N
 l(k) it tends to zero f(N, l)� 0. Correspondingly,

transmission length coincides with the ballistic length

lT(k)� b(k) for short stacks N � l(k) and with localization

length lT(k)� l(k) for long stacks N 
 l(k), with the transi-

tion between the two ranges of N being determined by the

crossover length l(k). Thus, ballistic regime occurs when the

stack is much shorter than the crossover length N � l(k).

The localized regime is realized for the stacks longer than

localization length N 
 l(k). For stacks of intermediate

sizes l(k) . N . l(k) transmission length coincides with

the localization length, however, they correspond to the

transition region between the ballistic regime and the local-

ized one.

Alternatively we can consider the stack with a given size

N and use the wavelength as the parameter governing the

localized and ballistic regimes. To do this, we introduce two

characteristic wavelengths, k1(N) and k2(N), defined by the

relations,

N ¼ lðk1ðNÞÞ; N ¼ lðk2ðNÞÞ: (3.11)

In these terms, the localized regime occurs if k � k1(N),

while in the long-wavelength region, k 
 k2(N), the

propagation is ballistic. Intermediate range of wavelengths,

k1(N)< k< k2(N), corresponds to the transition region

between the two regimes.

Consider now the example of rectangular distribution,

where the fluctuations dj
(�) and dj

(d) are uniformly distributed

over the intervals [�Q�, Q�] and [�Qd, Qd], respectively,

and have the same order of magnitude Q� � Qd, so that the

dimensionless parameter

f ¼ 2
Q2

d

Q2
�

is on the order of unity.

In the next step we calculate the averages hln jtji, hjrji,
and hjt2ji with the help of Eqs. (3.2)–(3.5), substitute them

into Eqs. (3.9) and (3.10), and neglect the contribution of

terms of order higher than Q2
d. The resulting general expres-

sions for localization, ballistic, and crossover lengths are

rather cumbersome, so we present here only their asymptoti-

cal forms.

In the short-wavelength region, the main contribution to

localization length is related to the first term in the r.h.s. of

Eq. (3.9), corresponding to the single scattering approxima-

tion, and the localization length is

lðkÞ ¼ 12

Q2
�

; k� 1: (3.12)

This means that the size N of the short stack NQ2
� � 1 is

always smaller than the localization length, and short-wave

transmission through a short stack is always ballistic.

The opposite limiting case NQ2
� 
 1 corresponds to long

stacks. In this case both regimes are realized, and transition

from localized propagation to the ballistic one occurs at the

long wavelength k � Q�

ffiffiffiffi
N
p


 1. Indeed, asymptotical

expressions for all three characteristic lengths read

lðkÞ � 3k2

2p2Q2
�

3þ f
1þ f

; (3.13)

lðkÞ � 3k2

2p2Q2
�

1

4ð3þ fÞ ; (3.14)

and

bðkÞ � 3k2

2p2Q2
�

: (3.15)

Note that the single scattering approximation for local-

ization length fails in the long-wave limit because both terms

in the r.h.s. of Eq. (3.9) contribute to the asymptotic value

Eq. (3.13).

Thus, in the symmetric weak scattering case, ballistic,

localization, and crossover lengths in the long-wave region

differ only by numerical multipliers, satisfy the inequality

l(k)< b(k)< l(k) mentioned above, and are proportional to

k2. Two characteristic wavelengths Eq. (3.11) corresponding

to localization length Eq. (3.13) and crossover length Eq.

(3.14), are proportional to Q�

ffiffiffiffi
N
p

, differ only by a numerical

multiplier, and satisfy the inequality k1(N)< k2(N). For
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sufficiently long stacks NQ2
� 
 1, they are lying in the long-

wave region k1,2
 1.

Localization properties of an infinite stack are described

by the Lyapunov exponent Eq. (2.10) or by localization

length Eq. (2.11). Within the considered model Eqs.

(3.2)–(3.5), its long-wave asymptotic value calculated with

the help of the well known transfer matrix approach reads

c �
p2



1þ dðdÞ
�2

2k2

�2 � �2

�
; � ¼ ð1þ dð�ÞÞ2: (3.16)

In the case of rectangular distribution of fluctuations of

the dielectric constants and thicknesses described above, the

reciprocal of the Lyapunov exponent is reduced to

lnðkÞ ¼ c�1ðkÞ � 3k2

2p2Q2
�

(3.17)

coinciding with the ballistic length b(k). Thus, the disordered

M-stack in the long-wavelength region presents a unique

example of a one-dimensional disordered system, in which

the localization length, defined as transmission decrement of

a sufficiently long stack, differs from the reciprocal of the

Lyapunov exponent.

The qualitative picture of transmission and localization

properties of the symmetric mixed stack described above

remains correct in the much more general case, where statis-

tical properties of the r and l layers are different, and the dis-

tributions of fluctuations and thicknesses are not rectangular.

The only distinction we expect is that localization and cross-

over lengths will have different wavelength dependence,

which will result in a more complicated structure of the bal-

listic region, like that considered below for an H-stack (see

Sec. 3.3 below).

To check the WSA theoretical predictions formulated

above we provided a series of numerical calculations. They

were made for the lossless stack with uniform distributions

of fluctuations d(d) and d(�), with widths Q�¼ 0.25 and

Qd¼ 0.2, respectively, and included: (a) direct simulations

based on the exact recurrence relations (2.16) and (2.17); (b)

weak scattering analysis for the transmission length. In all

cases, unless otherwise mentioned, ensemble averaging is

taken over Nr¼ 104 realizations.

Throughout this subsection we considered only M-

stacks. Nevertheless, to emphasize the main features of the

transmission in metamaterials, we compare transmission

spectra for an M-stack of N¼ 105 layers and an H-stack of

length N¼ 103, plotted in the same Fig. 2. Both stacks are

sufficiently long: for the shortest of them the parameter NQ2
�

is 62.5 
1. There are two major differences between the

results for these two types of samples: first, in the localized

regime (N
 lT) transmission length of the M-stack exceeds

or coincides with that of the H-stack; second, in the long-

wavelength region the plot of transmission length of the M-

stack exhibits a pronounced bend or kink in the interval k [
[102,103], while there is no such feature in the results for the

H-stack.

Figure 2 demonstrates excellent agreement of analytical

and numerical results: the curves obtained by direct numeri-

cal simulations and by calculations based on the weak

scattering approximation are indistinguishable (solid line).

The short- and long-wavelength behavior of the transmission

length is also in excellent agreement with the calculated

asymptotics in both regimes. The characteristic wavelengths

of this mixed stack are k1� 148 and k2� 839. Therefore, the

region k . 148 corresponds to the localized regime, whereas

longer wavelengths, k & 839, correspond to the ballistic re-

gime. Thus, the kink observed within the region k1 . k . k2

describes the crossover from the localized to the ballistic re-

gime. The long-wave asymptotic value of the ballistic

length, as we saw below, coincides with that of the recipro-

cal of the Lyapunov exponent. Therefore, the difference

between the localization and the ballistic lengths of the M-

stack simultaneously confirms the difference between the

localization length and the reciprocal of the Lyapunov expo-

nent in the localized regime.

More detailed numerical calculations of the transmission

length, average reflectance, and characteristic wavelengths

of M-stacks of various sizes also demonstrate excellent

agreement between direct simulations and WSA based cal-

culations thus completely confirming the theory presented

above.44

Until now, we have dealt only with transmission length

lT(k), which was defined through an average value. However,

additional information can be obtained from the transmission

length lN(k) for a single realization,

1

lN
¼ � ln jTNj

N
:

In the localized regime, i.e., for a sufficiently long M-

stack with N
 l, the transmission length for a single realiza-

tion lN(k) is practically nonrandom and coincides with lT(k)

and l, while in the ballistic region it fluctuates. The data dis-

played in Fig. 3 enables us to estimate the difference

between the transmission length lT(k) (solid line) and the

transmission length lN(k) for a single randomly chosen real-

ization (dashed line), and the scale of the corresponding fluc-

tuations. Both curves are smooth, coincide in the localized

region, and differ noticeably in the ballistic regime. The sep-

arate discrete points in Fig. 3 present the values of

FIG. 2. (Ref. 44) Transmission length lT vs. k for an M-stack (thick solid

line, direct simulation and calculations based on WSA recurrence relations)

and an H-stack (thick dashed line, direct simulation). Asymptotic values of

the localization length l: the short-wavelength asymptotic value (thin dotted

line), and the long-wavelength asymptotic values (a thin solid line for the

M-stack and a thin dashed line for the H-stack).

Low Temp. Phys. 38 (7), July 2012 Gredeskul et al. 577

Downloaded 06 Aug 2012 to 132.72.138.1. Redistribution subject to AIP license or copyright; see http://ltp.aip.org/about/rights_and_permissions



transmission length lN(k) calculated for different randomly

chosen realizations. It is evident that fluctuations in the bal-

listic region become more pronounced with increasing

wavelength.

3.3. Homogeneous stack

For an H-stack composed entirely of either normal mate-

rial or metamaterial layers, the transmission length obtained

within the WSA is

1

lT
¼ 1

l
þ 1

N
Re

hri2

ð1� ht2iÞ2
1� exp �N

l
� i

N

lb

� �� ( )
;

(3.18)

where l is the crossover length Eq. (3.10), and lb is the ballis-

tic crossover length defined by the equation

1

lb

¼ �Im lnht2i:

The H-stack localization length l is

1

l
¼ �hln jtji � Re

hri2

1� ht2i ; (3.19)

where r, t are the transmission and reflection coefficients of

an R layer (for L layers they should be replaced with r* and

t*, however, this does not change the final result due to the

real part operation Re).

Here, we consider the simplest lossless model (r¼ 0)

with only refractive index disorder (i.e., Qd¼ 0). In contrast

to the M-stack case (see Sec. 3.2), where a minimal model,

manifesting all the common features of M-stack transmission

properties, necessarily includes an additional random param-

eter (in the previous subsection it is the layer thickness), for

the H-stack it is sufficient to include only one such parame-

ter. As earlier, we assume uniform distribution of refractive

index fluctuations with the width 2Q�. In this case, the short-

wave asymptotic value of the localization length coincides

with that of the M-stack Eq. (3.12), and, similarly to the

M-stack, transmission through short H-stacks with N.Q�2
�

is always ballistic. So, below we consider long stacks NQ2
�


 1.

In the long-wave region k 
1, the three characteristic

lengths entering Eq. (3.18) asymptotically are

l ¼ 3k2

2p2Q2
�

; l ¼ k2

8p2Q2
�

; lb ¼
k

4p
: (3.20)

The main contribution to the long-wave and short-wave as-

ymptotic value of localization length is related to the first

term in Eq. (3.19). Thus, localization length of the H-stack

in these two limits is well described by the single scattering

approximation. The long-wave asymptotic value of the H-

stack localization length differs from that of the M-stack and

coincides with the reciprocal of its Lyapunov exponent Eq.

(3.17) and the ballistic length Eq. (3.15).

We also calculated the H-stack Lyapunov exponent. It is

described by the same Eq. (3.16) as that for the M-stack,

thus the reciprocals of the Lyapunov exponents for both

types of stacks have the same asymptotic form Eq. (3.17).

This coincidence was established analytically in a wider

spectral region in Ref. 53.

Long H-stacks with N
 Q�2
� in the long-wave region k


1 manifest both ballistic and localized behavior. Transi-

tion between these regimes is governed by two characteristic

wavelengths defined by Eq. (3.11). Similarly to the M-stack

case, they are proportional to Q�

ffiffiffiffi
N
p

, differ only by a numer-

ical multiplier, and satisfy the inequality k1(N)< k2(N).

At the starting part of the long-wave region 1� k
� k1(N) the transmission length lT coincides with the local-

ization length l and has an asymptotic value described by

Eq. (3.20). Then, after passing the transition region k1(N)

� k � k2(N), ballistic regime k 
 k2(N) starts. In this

regime transmission length coincides with the ballistic

length b(k) described by equation

1

bðkÞ ¼
2p2Q2

�

3k2
1þ NQ2

�

12

sinðk3ðNÞ=2kÞ
k3ðNÞ=2k

� �2
" #

;

k3ðNÞ ¼ 4pN; (3.21)

obtained through the expansion of exponent exp(�N/l) in

Eq. (3.18).

Due to the appearance of an additional characteristic

wavelength k3(N) determined by equation N¼ lb(k3(N)),

where lb is the ballistic crossover length Eq. (3.20), the bal-

listic region is naturally divided onto two subregions. The

first of them defined by inequalities k2(N) � k� k3(N) is

near the ballistic region, where ballistic length coincides

with the localization length,

bnðkÞ ¼
3k2

2p2Q2
�

: (3.22)

Thus, crossover from the localized regime to the ballistic

one is not accompanied by any change of the transmission

length. In the ballistic transition region k � k3(N) the second

term in Eq. (3.21) becomes essential leading to oscillations

of the ballistic length. Finally, in the far ballistic region k

 k3(N) expansion of the sine in Eq. (3.21) shows that for

long stacks the second term in this equation dominates, and

the far ballistic length is

FIG. 3. (Ref. 44) Transmission lengths lT (solid black line), and the trans-

mission length for a single realization lN (dashed blue line) vs. k for an M-

stack with Q�¼ 0.25, Qd¼ 0.2, and N¼ 104 layers. Each separate point cor-

responds to a particular wavelength with its own realization of a random

stack.
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1

bf ðkÞ
¼ 2p2Q2

�

3k2
1þ NQ2

�

12

� �
� Np2Q4

�

18k2
: (3.23)

The region k	 k3(N) possesses a simple physical inter-

pretation. Indeed, in this subregion the wavelength essen-

tially exceeds the stack size, and so we may consider the

stack as a single weakly scattering uniform layer with an

effective dielectric permittivity44

eeff ¼ 1þ Q2
�

3

� �
:

Substitution of this value into the text-book formula for

reflectivity of a uniform sample leads immediately to the far

long-wavelength ballistic length Eq. (3.23). We note that

because of the effective uniformity of the H-stack in the far

ballistic region, the transmission length on a single realiza-

tion is a less fluctuating quantity than that in the near ballis-

tic region, where it fluctuates strongly, as it does over the

entire ballistic region for M-stacks.

Numerical calculations for an H-stack show excellent

agreement between direct simulations and calculations based

on the WSA: the corresponding curves can not be distin-

guished. Figure 2 explicitly demonstrates that transmission

length conserves the same analytical form in the localized

long-wave region and near the ballistic region. For the con-

sidered stacks with N¼ 103 transmission spectrum features

corresponding to the transition between two ballistic subre-

gions can not manifest. Indeed, the transition occurs at wave-

length k �104 that is out of range in this figure.

To study the crossover from near to far ballistic behavior

consider the transmission lengths of H-stacks with N¼ 103

and 104 over the wavelength range extended up to k �106

plotted in Fig. 4. Transition from the localized to the near

ballistic regime occurs without any change in the analytical

dependence of transmission length, however, the crossover

from the near to the far ballistic regime is accompanied by a

change in the analytical dependence that occurs at k¼ k2(N),

which for these stacks is on the order of 104 and 105, respec-

tively. The crossover is accompanied by prominent oscilla-

tions described by Eq. (3.21). Finally, we note that vertical

displacement between the moderately long and extremely

long-wavelength ballistic asymptotic values does not depend

on the wavelength, but grows with the size of the stack

according to the law

ln
bn

bf
¼ ln

NQ2
�

12
;

which stems from Eqs. (3.22) and (3.23).

A detailed study of the average reflectivity of H-stacks

with various lengths in the entire long-wave region44 also

completely confirms theoretical predictions formulated

above.

Consider now the statistical properties of the H-stack

transmission length on a given realization lN(k). For very

long stacks N ! 1 this length becomes practically nonran-

dom in both the localized region due to self-averaging of the

Lyapunov exponent, and the far ballistic region due to self-

averaging nature of effective dielectric permittivity. For less

long stacks, transmission length lT also fluctuates even in the

far ballistic region. However, for sufficiently long stacks

these fluctuations are essentially suppressed since they must

vanish in the limit as N!1. This is demonstrated in Fig. 5,

where transmission length lT (solid line) and the transmission

length lN(k) for a single randomly chosen realization (dashed

line) are plotted. Like in the M-stack case, the H-stack single

realization transmission length in the near ballistic region is

a complicated and irregular function, similar to the well

known “magneto fingerprints” of magnetoconductance of a

disordered sample in the weak localization regime.75 This

statement is supported by the displayed in Fig. 5 set of sepa-

rate discrete points, each of them presenting transmission

length calculated for a different randomly chosen

realization.

FIG. 4. (Ref. 44) Transmission length lT vs. k for H-stacks of N¼ 103 (solid

line) and 104 (dotted line) layers (numerical simulation and WSA). Long-

wave asymptotic values for the ballistic length in the near and far ballistic

regions are plotted in thin solid lines.

FIG. 5. (Ref. 44) Transmission lengths lT (solid black line) and the trans-

mission length for a single realization lN (dashed blue line) vs. k for an H-

stack with Q�¼ 0.25, Qd¼ 0.2, and N¼ 104 layers. Each separate point cor-

responds to a particular wavelength with its own realization of a random

stack.
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3.4. Transmission resonances

An important signature of the localization regime is the

presence of transmission resonances (see, for example, Refs.

76–78), which appear in sufficiently long, open systems, and

which are a “fingerprint” of a given realization of disorder.

These resonances manifest themselves as narrow peaks of

transmittivity jTNj2 on a given realization as a function of

wavelength k. Figure 6 (Ref. 43) presents a single realization

of transmittance jTNj2 as a function of k for an M-stack

(dashed line) and for the corresponding H-stack of N¼ 103

layers (solid line). It is evident that resonance properties

exhibited by homogeneous and mixed media serve as

another (in addition to the behavior of the localization

length) discriminating characteristic of these two media.

Indeed, there are no resonances for the M-stack for

k & 4, while the disordered homogeneous stack exhibits well

pronounced resonances over the entire spectrum.

Note that the dotted curve in Fig. 6 describes resonance

properties of a periodic Qd¼ 0 comparatively short M-stack

with only refractive index disorder (RID). An important fea-

ture of such a stack is the lack of phase accumulation over

its total length: in the particular realization of Fig. 6, the

accumulated phase of the wave in the mixed stack never

exceeds p/2. Therefore, to subdue such a suppression of

phase accumulation one essentially needs to enlarge the

stack size or to switch on additional (thickness Qd or mag-

netic permittivity l) disorder.

The first possibility is demonstrated in Fig. 7, where

transmittance spectra jTj2 (k) for a realization of two differ-

ent M-stacks with two lengths N¼ 103 and N¼ 105 and only

refractive index disorder is displayed. It is readily seen that

while the resonances in the shorter stack (dashed line) at

k	 5 do not exist at all, they do appear in the same region

for the longer sample (solid line).

The second way to generate transmission resonances is

to introduce additional disorder. This is confirmed by the

transmittance spectra for a realization, of two M-stacks of

the same size N¼ 103 with only refractive index disorder

(dashed line), and both (thickness and refractive index) types

of disorder (solid line), plotted in Fig. 8. It is clear that while

the RID M-stack with this length, is too short to exhibit

transmission resonances at k> 3, resonances do emerge at

longer wavelengths for the M-stack with thickness disorder.

Transmission resonances are responsible for the differ-

ence between two quantities that characterize the transmis-

sion, namely transmittance logarithm hln jTj2i and logarithm

of average transmittance lnhjTj2i. The former reflects the

properties of a typical realization, while the latter value is of-

ten very sensitive to the existence of almost transparent real-

izations associated with the transmission resonances.

Moreover, in some cases namely small number of such real-

izations contribute mainly to the average transmittance.

Thus, the ratio of the two quantities mentioned above

s ¼ hlnjTj
2i

lnhjTj2i

is a natural characteristic of the transmission resonances. In

the absence of resonances this value is close to unity, while

in the localization regime s> 1. In particular, this ratio takes

the value 4 in the high-energy part of the spectrum of a dis-

ordered system with Gaussian white-noise potential.2

Consider the ratio s(k) as a function of wavelength for

RID M- and H-stacks and for the corresponding stacks with

thickness disorder, plotted in Fig. 9. In all cases, the stack

length is N¼ 103. It is evident that for the RID M-stack

s(k)� 1, i.e., the length of this M-stack is too short for the

localization regime to be realized. In the other three cases,

however, s(k) & 2, which means that localization takes

place even in such comparatively short stacks.

FIG. 7. (Ref. 44) Single realization transmittance |T|2 vs. wavelength k for

RID M-stacks with Q�¼ 0.25 and Qd¼ 0 for N¼ 105 layers (solid line) and

N¼ 103 layers (dotted line).

FIG. 8. (Ref. 44) Single realization transmittance |T|2 vs. k for an M-stack

of N¼ 103 layers with Q �¼ 0.25. Solid line corresponds to an M-stack with

Qd¼ 0.2, and the dashed line – to an M-stack with no thickness disorder,

i.e., Qd¼ 0.0.

FIG. 6. (Ref. 43) Transmittance |T|2 vs. k for a single realization (Q¼ 0.25,

N¼ 103). Solid: normal H-stack, dotted: M-stack.
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3.5. Polarization effects

The results obtained above for normal incidence can be

easily generalized to the case of oblique incidence. Here, all

the characteristic lengths and wavelengths depend on the

angle of incidence h, and s- and p-polarizations should be

considered separately. Qualitatively new features appear:

essential enlightening in vicinity of the Brewster angle and

appearance of supercritical regime induced by total internal

reflection. We describe these new properties within the

framework of the model defined in a previous section

(Sec. 3.1).

General expressions for transmission length for both M-

stacks (Eqs. (3.7)–(3.10) and H-stacks (Eqs. (3.18) and

(3.19)) as well as general expressions Eq. (3.2) for transmis-

sion and reflection coefficients of a single layer remain the

same as in the case of normal incidence. However, explicit

expressions for the parameters entering these coefficients are

changed. The Fresnel interface reflection coefficient is now

given by

q¼Z cos h� � cos h
Z cos h� þ cos h

;

Z ¼ Z�1; s-polarization;

Z; p-polarization:

	 (3.24)

Here, the characteristic angle h� and the layer impedance Z
relative to the background (free space) according to Eq. (3.4)

are

cos h� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin2h

�2

s
; Z ¼

ffiffiffi
l
e

r
¼ 1

1þ d�
:

Then the phase shift b is

b¼ kd�cos h�; k ¼ 2p=k: (3.25)

The characteristic angle conserves its direct geometrical

meaning for the incidence angle h� hc (subcritical incidence

angle), where the critical angle is

hc ¼ sin�1ð1� Q�Þ:

For the supercritical incidence angle h	 hc the values of h�
are complex.

Below we mention only the final asymptotical expres-

sions for some characteristic lengths of the problem in the

typical cases. We take into account both types of disorder,

however, in all final results we keep only the leading terms

and omit the higher order corrections with respect to refrac-

tive index and thickness fluctuations Q�,d.

In the short-wave limit, localization length is the same

for M- and H-stacks. In the subcritical region of incidence

angles it is

1

l
� Q2

v

12cos4 h
1; s-polarization;

cos2 2h; p-polarization:

�

Note that for p-polarization this expression acquires an angle

dependent multiplier that vanishes at the Brewster angle

h¼ p/4. Accounting for the next term we obtain the localiza-

tion length at the Brewster angle

l ¼ 45=4Q4
�;

which is Q�
�2 times larger than that far from the Brewster

angle and than that for s-polarization in the same shortwave

limit.

At the incidence angle h> hc total internal reflection

occurs and the WSA fails. If the supercriticality h� hc is not

extremely small, then the exponent 2ib in Eq. (3.2) is real

and negative, and thus the magnitude of the single layer

transmission coefficient is exponentially small. This results

in the attenuation length for both polarizations

1

latt

¼ Imhbi ¼ k Imhd
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 h� �2

p
i

¼ ksin2h
8Q�

ðp� 2h0 � sin 2h0Þ; sin h0 ¼
sin hc

sin h
:

Due to ! k dependence, in the short-wave limit latt ! 1,

and transmission length in the supercritical region of the

angles of incidence coincides with the attenuation length.

However, for the same reason, at long-waves the attenuation

contribution can be neglected, and the main contribution to

transmission length is due to Anderson localization.

In the long-wave region, H- and M-stacks demonstrate

different behavior, and we describe them separately.

a) Homogeneous stacks

For s-polarization, the long-wave asymptotic value of

transmission length is similar to that for normal incidence

Eq. (3.21)

1

lT
¼ 2p2Q2

�

3k2cos2h
1þ NQ2

�

12

sinð2pN cos h=kÞ
ð2pN cos hÞ=k

� �2
" #

:

This expression describes the localized regions, as well as

both ballistic subregions.

In the case of a p-polarized wave, the localization length

is given by

1

l
¼ 2p2Q2

�cos2 2h

3k2cos2h
þ p2Q4

�

6cos4 h

� 1� 19

6
cos 2hþ 7

15
cos 4hþ 19

30
cos 6h

� �
:

FIG. 9. (Ref. 44) Ratio s vs. wavelength k for Q�¼ 0.25 and stack length

N¼ 103. Solid and dashed curves are for the RID H-stack and H-stack with

Qd¼ 0.2, respectively. The middle dashed-dotted curve is for an M-stack

with Qd¼ 0.25, and the bottom dotted line is for a RID M-stack.
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At the Brewster angle h¼p/4 the first term vanishes, and

transmission length is

1

l
¼ 16p2Q4

�

45k2
: (3.26)

b) Mixed stacks

Reciprocal transmission length for an s-polarized wave is

1

lT
¼ k2Q2

�

3 cos2 h
1

2
� 1� f ðNaSÞ

3þ f cos4 h

� �
;

aS ¼
k2Q2

�

3 cos2 h
ð3þ f cos4 hÞ; (3.27)

where the function f and parameter f are defined in Sec. 3.2.

Equation (3.27) describes the transition from localization to

ballistic propagation at long wavelengths. In the limit N!1
transmission length tends to localization length

l ¼ 3k2 cos2h
2p2Q2

�

3þ f cos4 h
1þ f cos4 h

;

while the opposite extreme, i.e., as N!0, gives the ballistic

length

b ¼ 3k2 cos2 h
2p2Q2

�

;

which coincides with that for an H-stack in s-polarization.

For p-polarized waves incident at angles away from the

Brewster angle, transmission length is given by

1

lT
¼ k2Q2

� cos2 2h
3 cos2 h

1

2
� 1� f ðNapÞ

2þ cos2 2hþf cos4 h

� �
;

ap ¼
k2Q2

�

3 cos2 h
ð2þ cos2 2hþf cos4 hÞ: (3.28)

Localization length is deduced from Eq. (3.28) by taking the

limit as N!1

l ¼ 3k2cos2h
2p2Q2

�cos22h
2þ cos22hþfcos4h

cos22hþfcos4h
:

Correspondingly, ballistic length is obtained by calculating

the limit as N! 0

b ¼ 3k2 cos2 h
2p2Q2

� cos2 2h
:

At the Brewster angle h¼p/4, accounting for the higher

order corrections to r.h.s. of Eq. (3.28), we obtain the trans-

mission length, and the result is the same as Eq. (3.26) that

for an H-stack.

All analytical predictions are confirmed by numerical

calculations. As in the case of normal incidence, theoretical

curves based on WSA mostly can not be distinguished from

those obtained by direct simulations. The results obtained

are mostly similar to those of normal incidence. Therefore,

here we mention only some of them. Specifically, those

which differ from those presented above.

In Fig. 10 the transmission length spectrum for an

M-stack of length N¼ 106 in p-polarized light with other pa-

rameters Q�¼ 0.1, Qd¼ 0.2, Nr¼ 104, and incidence angle

h¼ p/4 is displayed. The chosen angle of incidence is less

than the critical angle hc¼ arcsin 0.9¼ 64.16, and coincides

with the Brewster angle for a single layer with mean refrac-

tive index �¼61. The results of the numerical simulation

and the WSA analytical forms coincide and are displayed

with a single solid red line. Localization occurs for

k� k1� 19, while the transition from localization to ballistic

propagation occurs at k � k1. In contrast to the case of

s-polarization, this transition is not accompanied by a change

of scale and is given by the same wavelength dependence.

Transition from near to far ballistic length is accompanied

by oscillation of transmission lengths, which are much more

pronounced in comparison to the case of normal incidence.

Now, consider a supercritical case, where the angle of

incidence h¼ 75 exceeds the critical angle. In Fig. 11 the

transmission length spectrum for s-polarized light is pre-

sented. The results of both the exact numerical calculation

(red solid line) and the analytic form (long dashed blue

curve) are displayed. The short-wave (dashed dotted line)

and the long-wave (black dashed line) asymptotic values of

transmission length, respectively, coincide with numerical

results for k� 1 and 200� k. In the intermediate

region 1� k� 200, however, the theoretical description

FIG. 10. (Ref. 45) Transmission length lT vs. k for an M-stack in p-polar-

ized light with Q�¼ 0.1, Qd¼ 0.2, and N¼ 106, at the Brewster angle

h¼ 45 (red solid line). The blue dashed line shows results for s-polarization

and an H-stack, replotted for comparison.

FIG. 11. (Ref. 45) Transmission length lT vs. k for an M-stack in s-polarized

light with Q�¼ 0.1, Qd¼ 0.2, and N¼ 104, and for the supercritical inci-

dence angle h¼ 75. Red solid curve: numerical simulations; blue dash

curve: analytical form.
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underestimates the actual transmission length since the WSA

is no longer valid for the chosen, supercritical angle of inci-

dence. For p-polarization the results are qualitatively the

same, but with an even more pronounced discrepancy at in-

termediate wavelengths.

We also consider the angular dependence of transmis-

sion length for mixed stacks. In Fig. 12 the transmission

length lT as a function of angle h for a stack of length

N¼ 106 at two wavelengths k¼ 0.1 and k¼ 1 is displayed.

In either case, the calculated transmission length does not

exceed the stack length, and so, for subcritical angles our

calculations display the true localization length. For the

shorter wavelength k¼ 0.1 the form of transmission length

for both polarizations is similar to that observed for homoge-

neous stacks.

Figure 12(b) displays the results for intermediate wave-

length k¼ 1 with the lower solid red and blue dashed curves,

respectively, displaying the results of numerical simulations

and analytical predictions for s-polarization (bottom curves),

while the upper solid green and brown dashed curves display

simulations and analytical predictions for p-polarization. The

agreement between simulations and the theoretical form is

again excellent for angles of incidence less than the critical

angle, h< hc, while for angles greater than the critical angle

the discrepancies that are evident are again explicable by the

breaking down of the WSA at extreme angles of incidence.

3.6. Dispersive metamaterials

Real metamaterials are always dispersive materials.

Here we consider the dispersive model of a stack composed

of metalayers with the same thickness d and random dielec-

tric permittivity and magnetic permeability described by the

Lorentz oscillator model

eðf Þ ¼ 1�
f 2
ep � f 2

e

f 2 � f 2
e þ icf

; (3.29)

lðf Þ ¼ 1�
f 2
mp � f 2

m

f 2 � f 2
m þ icf

: (3.30)

Here, f is circular frequency, fm and fe are the resonance fre-

quencies, and c is the phenomenological absorption parame-

ter. In this model, disorder enters the problem through

random resonance frequencies so that

fe ¼ f eð1þ deÞ; fm ¼ f mð1þ dmÞ;

where f e,m¼hfe,mi are the mean resonance frequencies (with

the angle brackets denoting ensemble averaging), and de,m

are independent random values distributed uniformly in the

range [�Qe,m, Qe,m]. The characteristic frequencies fmp and

fep are not random. Therefore, in lossless media (c¼ 0) both

magnetic permeability and dielectric permittivity vanish

with their mean values, e(f)¼he(f)i, and l (f)¼hl(f)i at fre-

quencies f¼ fep and f¼ fmp, respectively, i.e.,

lðfmpÞ ¼ lðfmpÞ ¼ 0; eðfepÞ ¼ eðfepÞ ¼ 0:

Following Refs. 79 and 80, in our numerical calcula-

tions we choose the layer thickness d¼ 0.003 m and the

values of characteristic frequencies fmp¼ 10.95 GHz,

fm0¼ f m¼ 10.05 GHz, fep¼ 12.8 GHz, fe0¼ f e¼ 10.3 GHz,

and c¼ 10 MHz, which fit the experimental data given in

Ref. 79. That is, we are using a model based on experimen-

tally measured values for the metamaterial parameters.

Then we choose the maximal widths of distributions of the

random parameters de,m as Qe,m¼ 5�10�3, corresponding to

weak disorder.

We focus our study on the frequency region 10.40 GHz

< f< 11.00 GHz. In the absence of absorption and disorder,

for these frequencies the dielectric permittivity and magnetic

permeability of the metamaterial layers vary over the intervals

�26.9< e<�2.9 and �1.64< l< 0.055. The refractive

index is negative in the frequency range 10.40 GHz

< f< fmp¼ 10.95 GHz, as shown in the inset of Fig. 13. How-

ever, at fmp¼ 10.95 GHz the magnetic permeability changes

sign, and the metamaterial changes from being double nega-

tive (DNM) to single negative (SNM). As we show later, such

changes have a profound effect on localization properties.

We study the transmission of a plane wave, either s- or

p-polarized, and incident on a random stack from free space

at an angle of incidence h0.

In the previous subsections we have described and used

an effective WSA method developed and elaborated on in

Refs. 43–45 for the study of transport and localization in ran-

dom stacks composed of weakly reflecting layers.

In the dispersive case, reflection from a single layer

located in free space is not necessarily weak, in which

instance the method seems inapplicable. However, we

can replace each layer with the same layer surrounded by

infinitesimally thin layers of a background medium with

permittivity and permeability given by the mean values of

FIG. 12. (Ref. 45) Transmission length lT vs. incidence angle h for a mixed

stack with Q�¼ 0.1, Qd¼ 0.2, for k¼ 0.1 (a), and k¼ 1 (b). The top and bot-

tom curves are, respectively, for p- and s-polarizations.
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e(f): he(f)i and l(f): hl(f)i, respectively. In the consid-

ered case of weakly disordered stacks we can use the WSA

for all the layers except the two “leads” connecting the stack

with free space on the very left and the very right, where it

ends. Localization characteristics, which are intrinsic proper-

ties of the stack, do not feel the leads. Their role is restricted

to only change the coupling conditions for the random stack

through the angle of incidence, transforming it from its given

value h0 outside the lead to the frequency dependent

refracted value hb inside the lead. These angles are related

by the Snell law sin h0¼ sin hb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eðf Þlðf Þ

p
. It is important to

note that while in the localized regime the input and output

leads are of no significance, they do play a crucial role when

localization breaks down (see below).

Single layer scattering is described by Eqs. (3.2), where,

according to Eqs. (3.1) and (3.25),

bn ¼ kd�n cos hn; �n ¼
ffiffiffiffiffiffiffiffiffi
enln

p
; (3.31)

and k¼ 2p/k¼ 2pf/c is the free space wavenumber. The

interface Fresnel reflection coefficient qn is given by

qn ¼
Zb cos hb � Zn cos hn

Zb cos hb þ Zn cos hn
: (3.32)

Impedances Zb and Zn are

Zb ¼
( ffiffiffiffiffiffiffiffi

l=e
p

; p-polarization;ffiffiffiffiffiffiffiffi
e=l

p
; s-polarization;

Zn ¼
( ffiffiffiffiffiffiffiffiffiffiffi

ln=en

p
; p-polarization;ffiffiffiffiffiffiffiffiffiffiffi

en=ln

p
; s-polarization;

and angles hb and hn satisfy Snell’s law

�n sin hn ¼ � sin hb ¼ sin h0; � ¼
ffiffiffiffiffi
el

p
: (3.33)

General WSA expressions (3.19) and (3.9) for the localiza-

tion length of monotype and mixed stacks remain valid for

stacks composed of dispersive stacks. To study localization

properties of such stacks we should insert there the same

single layer scattering coefficients Eq. (3.2) with dispersive

phase shift Eq. (3.31) and Fresnel coefficient Eq. (3.32).

Dispersion essentially affects transport properties of the

disordered medium. In particular, it can lead to suppression

of localization either at some angle of incidence or at a

selected frequency, or even in a finite frequency range.

Below we consider the first two cases for an H-stack com-

posed of L-layers. The third case will be considered further

in Sec. 3.7.

In the presence of dispersion, the long-wave asymptotic

value of localization length is

1

l
¼ p2d2

2k2ðf Þ
hl2i � hli2

hli2
þ he

2i � hei2

hei2

 !
; (3.34)

where e and l are given by Eqs. (3.29) and (3.30), and

frequency-dependent wavelength in the medium is

kðf Þ ¼ c

f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eðf Þlðf Þ

p
and can be large even when the wavelength of incident sig-

nal, k¼ c/f, is small.

Accordingly, the inverse localization length

l�1 / f 2eðf Þlðf Þ

becomes small not only at low frequencies f! 0, but also in

vicinity of l- or e-zero points. For example, as frequency

approaches the l-zero point from below (i.e., f ! f�mp) in an

H-stack of metamaterial layers, l(f) for any realization is

proportional to the difference (fmp� f), and the expression

for localization length diverges with (fmp� f)�1. Formally,

this divergence can be treated as delocalization, however,

the limiting value 1/l¼ 0 means nothing but the absence of

exponential localization. Moreover, when localization length

becomes larger than the size of the stack, ballistic transport

occurs, and the transmission coefficient is determined by

transmission length, rather than by the localization length.

To calculate the transmission coefficient for this case we

consider, for the sake of simplicity, a stack with only e-
disorder. Here, the transfer matrix of the nth layer at f¼ fmp

has the form

T n � T ð�nÞ ¼
���� 1þ �n �n

��n 1� �n

����;
where �n¼ ikden/2.

As a consequence of the easily verified group property

T ð�1ÞT ð�2Þ ¼ T ð�1 þ �2Þ;

it follows that the stack transfer matrix T is

cT ¼
YN
n¼1

T ð�nÞ ¼
���� 1þ E E
�E 1� E

����;
where

E ¼ ikL

2

1

N

XN

n¼1

en; L ¼ Nd:

FIG. 13. (Color online) (Ref. 46) Transmission length lT vs. frequency f at

normal incidence (h0¼ 0) for a metamaterial stack without absorption (top

curve) and in the presence of absorption (bottom curves). Red solid curves

display numerical simulations, while blue dashed curves show analytical

predictions. Inset: the real (red solid line) and imaginary (green dashed line)

part of the metamaterial layer refractive index.
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In a sufficiently long stack, E � ikL�=2, and transmittance

T ¼ jT 11j�2
is given by

T ¼ 1

1þ



kLeðf Þ=2
�2
:

Thus, at frequency fmp transmittance of the sample is not an

exponentially decreasing function of length L (as is typical

for 1D Anderson localization). It decreases much more

slowly, namely, according to the power law T ! L�2. The

explanation of such a decrease is that at a l-zero point

(f¼ fmp) the refractive index �n vanishes together with the

phase shift bn¼ kd�n cos hn across the layer, thereby destroy-

ing the interference, which is the main cause of localization.

Another explanation is that the effective wavelength inside

the stack tends to infinity when l! 0 and exceeds the stack

length. Obviously, such a wave is insensitive to disorder and

therefore cannot be localized.

In the limit, as frequency approaches the l-zero fre-

quency from above (i.e., f! fþmp), the medium is single neg-

ative, and el< 0. For frequencies f not too close to fmp

radiation decays exponentially inside the sample due to tun-

neling, and in the absence of dissipation the decay rate is

latt ¼
1

kd
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�hlihei

p : (3.35)

Thus, as we approach l-zero frequency from the right,

the formally-calculated localization length diverges as l
! (f� fmp)�1/2, i.e., much more slowly than that for the left-

hand limit, for which l ! (fmp� f)�1. Transport properties in

vicinity of e-zero frequency fep can be considered in a similar

manner. Waves are also delocalized in the more exotic case

when both dielectric permittivity and magnetic permeability

vanish simultaneously. The vanishing of both l and e simul-

taneously can happen at Dirac points in photonic crystals.81

The use of off-axis incidence from free space for fre-

quencies for which l or e are zero is not an appropriate

mechanism for probing the suppression of localization.

Under such circumstances tunneling occurs, and localization

properties of the stack are not “accessible”’ from free space.

Nevertheless, the suppression of localization can be revealed

using an internal probe, e.g., by placing a plane wave source

inside the stack, or by studying the corresponding Lyapunov

exponent. Both approaches show total suppression of local-

ization at the frequencies at which dielectric permittivity or

magnetic permeability vanish.

Under such circumstances each layer that is embedded in

a homogeneous medium with material constants given by av-

erage values of dielectric permittivity and magnetic perme-

ability, is completely transparent, thus manifesting complete

suppression of localization. However, the “delocalized” states

at zero-l or zero-e frequencies are in a sense trivial, corre-

sponding to fields that do not change along the direction nor-

mal to the layers.

Another example of suppression of localization is

related to the Brewster anomaly. As we saw above, in a non-

dispersive mixed stack with only thickness disorder the

delocalization of p-polarized radiation occurs at the Brewster

angle of incidence. At this angle the Fresnel coefficient q

Eq. (3.24) and, therefore, the reflection coefficient Eq. (3.2)

as well, vanish for any frequency, thus making each layer

completely transparent.

In the presence of dispersion, the same condition q¼ 0

leads to more intriguing results. In this instance, frequency-

dependent angles, at which a layer becomes transparent,

exist not only for p-polarization, but also for an s-polarized

wave. This means that the Brewster anomaly occurs for both

polarizations, with the corresponding angles, hp and hs, being

determined by the conditions

tan2 hp ¼
eðel � elÞ
eðel� elÞ ; (3.36)

tan2 hs ¼
lðel� elÞ
lðel� leÞ : (3.37)

The right-hand sides of these equations always have op-

posite signs. Therefore, from the Brewster conditions (3.36)

and (3.37) one can find either the Brewster angle and the cor-

responding polarization for a given frequency, or the Brew-

ster frequency and the corresponding polarization for a given

angle of incidence.

While for a stack with only thickness disorder the condi-

tion q¼ 0 can be satisfied for all layers simultaneously,

when e and/or l fluctuate the conditions (3.36) or (3.37)

define the frequency-dependent Brewster angles, which are

slightly different for different layers. These angles occupy

an interval, within which the stack is not completely trans-

parent, but has anomalously large transmission lengths.27,45

When only the dielectric permittivity is disordered and

l¼l, the Brewster conditions (3.36) and (3.37) simplify to

tan2hs ¼ �1; (3.38)

tan2hp ¼
e
e
� 1: (3.39)

In this case, the Brewster condition is satisfied only for p-

polarization. For weak disorder, the Brewster angle of inci-

dence from the effective medium is hp�p/4. For a given fre-

quency f the angle of incidence from free space h0 should be

found from Snell’s law Eq. (3.33), and for a given h0 the

Brewster frequency fp follows from

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eðfpÞlðfpÞ

q
¼ sin h0

sin hp
¼

ffiffiffi
2
p

sin h0: (3.40)

Note that this equation may be satisfied at multiple frequen-

cies depending on the form of dispersion.

The case of only magnetic permeability disorder, e¼ e,

is described by similar equations, which are obtained by

switching s and p in Eqs. (3.38)–(3.40).

For disorder in both permeability and permittivity the ex-

istence of a Brewster anomaly angle depends, in accordance

with Eqs. (3.36) and (3.37), on the sign of the quantity

n ¼ ðel� elÞ=ðel� elÞ. If n> 0, the Brewster angle exists

for s-polarization, while if n< 0, it exists for p-polarization.

When n¼ 0 the layer and the medium in which it is embed-

ded are impedance matched, and thus the layer is completely

transparent.

The features of transmission length mentioned above are

completely confirmed by numerical calculations. Consider

Low Temp. Phys. 38 (7), July 2012 Gredeskul et al. 585

Downloaded 06 Aug 2012 to 132.72.138.1. Redistribution subject to AIP license or copyright; see http://ltp.aip.org/about/rights_and_permissions



first the case of normal incidence on a stack of N¼ 107

layers, in which we randomize only the dielectric permittiv-

ity (Qm¼ 0) with Qe¼ 0.5�10�2. In Fig. 13 the transmission

length lT as a function of frequency f is displayed. The upper

curves present the lossless case, while the lower curves show

the effects of absorption (see Ref. 46 for details).

The red solid curves and the blue dashed curves display

results from numerical simulations and the WSA theoretical

prediction, respectively. The top curves represent genuine

localization length for all frequencies except those in vicinity

of f� fmp¼ 10.95 GHz, where transmission length increases

dramatically.

In the absence of absorption, for frequencies f> 10.95

GHz the metamaterial transforms from double negative to

single negative (see inset in Fig. 13). The refractive index of

the metamaterial layer changes from being real to being pure

imaginary, the random stack becomes opaque, and transmis-

sion length decreases substantially. Such a drastic change in

transmission length (by a factor of 105) may be exploitable

in a frequency controlled optical switch. Across the fre-

quency interval 10.4 GHz< f< 11.0 GHz theoretical results

are in excellent agreement with those of direct simulation.

Moreover, for all frequencies except those in the region

10.4 GHz< f< 10.5 GHz the single scattering approximation

describes the lT behavior very well. Quite surprisingly, the

asymptotic value equations (3.34) and (3.35) are in excellent

agreement with numerical results even over the frequency

range 10.9 GHz< f< 11.0 GHz, including the near vicinity

of frequency fmp¼ 10.95 GHz, at which l vanishes.

Absorption substantially influences the transmission

length (the lower curve in Fig. 13)46 and smoothes the non-

monotonic behavior of transmission length for f< 10.5 GHz.

The small dip at f� 10.45 GHz correlates with the corre-

sponding dip in transmission length in the absence of absorp-

tion. The most prominent effect of absorption occurs for

frequencies just below the l-zero frequency fmp¼ 10.95

GHz. While in the absence of absorption, the stack is nearly

transparent in this region. Turning on absorption reduces the

transmission length by a factor of 102–103 for f> 10.7 GHz.

In contrast, for frequencies f> 10.95 GHz transmission

lengths in the presence and absence of absorption are nearly

identical, because here the stack is already opaque, and its

transmittance is not much affected by a small amount of

additional absorption.

The case where both disorders of dielectric permittivity

and magnetic permeability are present is qualitatively similar

to that of the single disorder case considered above.

In the case of oblique incidence the polarization effects

become important. In Fig. 14 the transmission length fre-

quency spectrum is displayed for the same metamaterial H-

stack with only dielectric permittivity disorder for the angle

of incidence h0¼ 30. Here, for frequencies f< 10.55 GHz

the transmission length is largely independent of polariza-

tion. Moreover, it does not differ from that for normal inci-

dence (compare with the top curve in Fig. 13). This is due to

high values of refractive indices at these frequencies

(j�nj> 4), resulting in almost zero refraction angles Eq.

(3.33) for angles of incidence that are not too large.

The transmission length manifests a sharp maximum at

an angle close to the Brewster angle, as commented upon in

Refs. 27 and 45. This is indeed apparent in Fig. 14 for

frequency f� 10.85 GHz. Because only e fluctuates, the

Brewster condition is satisfied only for p-polarization Eq.

(3.38) at a single frequency fp� 10.852 GHz. The introduc-

tion of additional permeability disorder (not shown) reduces

the maximum value of localization length by two orders of

magnitude.

Comparison of Figs. 13 and 14 shows that the frequency

of the maximal suppression of localization decreases as the

angle of incidence increases. At normal incidence it coin-

cides with the l-zero frequency fmp, while for oblique inci-

dence at h0¼ 30 it coincides with the Brewster frequency fp
for p-polarization.

Absorption strongly diminishes the transmission provid-

ing the main contribution to the transmission length, while

permittivity disorder has little influence on the transmission

length. Therefore, in this case the results for both polariza-

tions are practically indistinguishable.

The transmission properties of a stack with only mag-

netic permeability disorder at oblique incidence are similar

to those for the case of only dielectric permittivity disorder.

The key difference is that there is a Brewster anomaly for

s-polarization, while for p-polarization it is absent.

We also consider the dependence of transmission length

on the angle of incidence at a fixed frequency. The results

for both polarizations are displayed in Fig. 15. Here we have

plotted the transmission length of the stack with only dielec-

tric permittivity disorder with Qe¼ 0.5�10�2 at frequency

FIG. 14. (Ref. 46) Transmission length lT vs. frequency f for h0¼ 30 for a

metamaterial stack: without absorption, p-polarization (top curves), s-polar-

ization (middle curves); in the presence of absorption (bottom curves).

FIG. 15. (Ref. 46) Transmission length lT vs. angle of incidence for a ho-

mogenous metamaterial stack at f¼ 10.7 GHz with permittivity disorder: in

the absence of absorption (upper curve) and for p-polarization; middle curve

is for s-polarization; and in the presence of absorption and for both polariza-

tions (lower curves).

586 Low Temp. Phys. 38 (7), July 2012 Gredeskul et al.

Downloaded 06 Aug 2012 to 132.72.138.1. Redistribution subject to AIP license or copyright; see http://ltp.aip.org/about/rights_and_permissions



f¼ 10.90 GHz. The upper and middle curves in this figure

correspond to the results for p- and s-polarized waves,

respectively, in the lossless case. For s-polarized light, the

transmission length decreases monotonically with increasing

angle of incidence, while for a p-polarized wave it increases

with increasing angle of incidence. Such behavior reflects

the existence of a Brewster angle for p-polarization at the

Brewster angle h0¼ 20. The red solid curve shows the

results of simulations, while the blue dashed line is the ana-

lytical prediction.

As in the previous cases, in the presence of absorption,

the results for both polarizations are almost identical (the

lower curves in Fig. 15). For angles h0< 30, the transmis-

sion length is dominated by absorption, while for angles

h0> 30 tunneling is the dominant mechanism. The results

for permeability disorder are very similar to those for permit-

tivity disorder.

Transmission length manifests exactly the same behav-

ior for normal H-stacks as it does for H-stacks comprised of

metamaterial layers.

3.7. Anomalous suppression of localization

In this section we consider the stacks with only refrac-

tive index disorder (RID), i.e., the stacks with dd¼ dl¼ 0. In

this limit, there is nothing special for H-stacks. Their trans-

mission length demonstrates qualitatively and quantitatively

the same behavior as was observed in the presence of both

refractive index and thickness disorder. Corresponding for-

mulae for the transmission, localization, and ballistic lengths

can be obtained from the general case by taking the limit as

Qd! 0.

In the case of M-stacks, however, the situation changes

markedly. Here, suppression of localization in the long-wave

region becomes anomalously large enhancing transmission

length on some orders of magnitude and even changing its

functional dependence on the wavelength.43 Instead of the

universal ! k2 dependence, the long-wave asymptotic value

of both the localization length l and the reciprocal of the

Lyapunov exponent ln follows a power law ! km with a

much larger exponent m.

Let us start with some numerical results demonstrating

such anomalous growth of the long-wave localization

lengths l, ln of the minimally disordered M-stack with only

RID. In Fig. 16 the localization length ln for an M-stack with

Q¼ 0.25 is plotted. The solid line in Fig. 16 corresponds to

ln for propagation in an M-stack and a single realization of

N¼ 109 layers, while the dashed line is for the corresponding

H-stack with the same parameters. Within the localization

region ln(k)< 108, the M-stack reciprocal of the Lyapunov

exponent grows in the long-wave region essentially faster

than that of an H-stack. While the H-stack is described by

the standard exponent m¼ 2, its value for an M-stack was

estimated as m¼ 6, and the phenomenon itself was named as

k6 anomaly. The observed anomalous suppression of local-

ization was attributed to a lack of phase accumulation over

the sample, due to the cancelation of the phase that occurs in

alternating L- and R-layers.43

Anomalous enlightening is also manifested in the case

of oblique incidence. The next Fig. 17 displays transmission

length spectra for an M-stack with only refractive index

disorder for an angle of incidence h¼ 30. There is a striking

difference between the two polarizations: in the case of

p-polarized light, there is strong localization at long wave-

lengths (k� 102), with the localization length showing ! k2

dependence. In contrast, the localization length for s-polar-

ized light is much larger and is estimated to be � k6, as the

dependence occurring for normal incidence. Note that for s-

polarization, anomalous enlightening manifests itself only in

localization regions in Fig. 17, which are bounded from

above by the wavelength limits k� 5, 9, and 12 for stacks of

length N¼ 105, 107, and 8�108, respectively.

This asymmetry between the polarizations suggests that

the suppression of localization is due not only to the suppres-

sion of the phase accumulation, but also to the vector nature

of the electromagnetic wave. Because of the symmetry of

Maxwell’s equations between the electric and magnetic

fields, it is to be expected that for a model in which there is

disorder in magnetic permeability (with e¼61) the situation

will be inverted with anomalous enlightening for p-polarized

waves and with s-polarization showing strong localization.

The results of calculations44 provided for much longer

stacks (up to N¼ 1012) qualitatively completely coincided

with the previous ones. However, more detailed studies gave

results slightly different quantitatively. The generation of a

least squares fitting lT¼Akm to the transmission length data

led to surprising conclusions. The best fit was obtained using

m� 6.25 for N¼ 107, m� 7.38 for N¼ 109, and even

FIG. 16. (Ref. 43) Characteristic length ln vs. wavelength k for Q¼ 0.25

and N¼ 109 layers; the solid line is for the M-stack, while the dashed line is

for the corresponding (normal) H-stack.

FIG. 17. (Ref. 45) Transmission length lT vs. k for an M-stack with

Q�¼ 0.25, Qd¼ 0, and h¼ 30 for p-polarized light (cyan dashed dotted

curve, N¼ 106) and s-polarized light (red solid curve, N¼ 105; green dashed

curve, N¼ 107; blue dotted curve, N¼ 8�108).
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m� 8.78, for N¼ 1012. This shows that the question about a

genuine value of exponent m still remains open.

Consider now the long-wave behavior of the localization

length in the presence of dispersion. In Fig. 18(a) the trans-

mission length spectrum is plotted in the case of normal inci-

dence for a small permittivity disorder Qe¼ 0.5�10�2. One

can immediately observe significant (up to four orders of

magnitude) suppression of localization in the frequency

region 10.50 GHz< f< 10.68 GHz. However, this suppres-

sion seems to have nothing in common with the observed

above anomalous enlightening. Indeed, in this case localiza-

tion length grows with increasing frequency, while in the

previous studies43–45 similar growth was observed with

increasing incident wavelength. This is demonstrated in Fig.

8(b), where the same transmission length spectrum is plotted

as a function of free space wavelength. Thus, the localization

length decreases by four orders of magnitude, manifesting as

an enhancement, rather than suppression, of localization

with increasing wavelength.

Although at first look these findings are in sharp contrast

with the previous ones, they are correct and physically

meaningful. In the model studied earlier43–45 the wavelength

of incident radiation largely coincided with the wavelength

inside each layer. In dispersive medium considered here

these two wavelengths differ substantially. Accordingly, in

Fig. 18(c) we plot transmission length as a function of wave-

length within the stack and obtain results that are very simi-

lar to those in Refs. 43–45. To emphasize this similarity we

have plotted the transmission length spectrum for three dif-

ferent stack lengths: N¼ 105, 106, 107. It is easily seen that

the suppression of localization in the dispersive media is

qualitatively and quantitatively similar to that predicted in

Ref. 43. The corresponding exponent m of anomalous

enlightening estimated with the help of these results is

m� 8.2.

Enhanced suppression of localization exists in the

strictly periodic alternative M-stacks with a constant layer

thickness and only refractive index disorder. In other words,

in mixed stacks having constant layer thickness the dielectric

permittivity disorder alone is not sufficiently strong to local-

ize low-frequency radiation in a standard way. There are

many ways to violate these conditions. It is possible to add

thickness fluctuations43,44 or magnetic permeability fluctua-

tions,46 or to introduce a small difference between two con-

stant thicknesses of R- and L-layers, or not to change any

parameter but rearrange randomly the same numbers N/2 of

R- and L-layers.44 Each such violation immediately destroys

anomalous suppression of localization and restores the stand-

ard long-wave asymptotic value l ! k2.

Analytical results obtained above in Sec. 3 survive in

the dd! 0 limit and predict l ! k2 as the asymptotic value.

However, a more detailed investigation shows that WA in its

form (Eqs. (2.18) and (2.19)) fails in this limit.44

As was mentioned above, localization length ln exhibits

qualitatively the same behavior as transmission length lT. At

the same time, its calculation is simpler than that of lT. The

Lyapunov exponent in minimally disordered M-stacks was

calculated in Ref. 52 using some version of the method

described in Refs. 2, 41, 42, and 58 and at the end of Sec.

2.2. The remaining part of this Subsection contains slightly

modified details and results of this calculation.52

Consider an electromagnetic wave of frequency x¼ ck
in an infinite array comprised of two types of lossless alterna-

tive a and b layers of equal dimensionless thickness Dj¼ 1

with random dielectric permittivities. Enumerate the layers so

that the jth layer occupies the interval j� 1� z< j and choose

all odd layers of a type and all even of b type. For

an alternative array, it is natural to choose an elementary

cell composed of two adjacent layers as the main basic

element of the array.43,52 The nth cell occupies interval

2n� 2� z< 2n and consists of (2n – 1)-th and 2n layers of

type a and b, correspondingly. Each layer is characterized by

its type a(b), magnetic permeability la¼ 1 (lb¼61), refrac-

tive index �a(n) (�b(n)), impedance Za(n)¼ 1/�a(n) (Zb(n)

¼61/�b(n)), and wave number ka,b¼ k�a,b of the wave.

Within such a model, two systems are considered: the

H-array, when both a and b layers are made of righthanded

materials, and the M-array, where a layers are of right-

handed material, while b layers are of left-handed material.

We emphasize that on the contrary to the H-stack notion,

FIG. 18. (Ref. 46) (a) Transmission length lT vs. frequency f for a mixed

stack with N¼ 107 layers (top dotted blue curve), and only dielectric permit-

tivity disorder. The bottom curves on all the panels (a, b, c) are for a stack

with N¼ 107 layers with both permittivity and permeability disorder (the

cyan, solid curve displays simulation results, while the dashed, black curve

is for the analytical prediction); (b) is the same as (a), but plotted as a func-

tion of free space wavelength k0, while on panel (c) we plot transmission

length as a function of the averaged wavelength inside the stack normalized

to the thickness of the layer, for N¼ 107 layers (blue dotted top curve),

N¼ 106 layers (dashed green curve) and for N¼ 105 layers (red solid curve),

respectively.
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where all the layers have the same statistical properties, an

H-array is composed of two different materials with different

statistical properties for odd and even layers. Disorder is

incorporated into the model via dielectric permittivities ea,b

only, so that refractive index � is a sole fluctuation parame-

ter, and the upper index in its fluctuations dð�Þa;bðnÞ can be

omitted

�aðnÞ ¼ 1þ daðnÞ; �bðnÞ ¼ 6½1þ dbðnÞ�: (3.41)

Refractive index fluctuations da,b(n) are assumed to be delta-

correlated with zero mean value hda,b(n)i¼ 0 and variance

r2,

hdaðnÞdbðn0Þi ¼ r2dabdnn0 ; (3.42)

where angular brackets denote the ensemble average.

To calculate the Lyapunov exponent of an electromag-

netic wave of the frequency x, consider a two-component

vector

Sn ¼
Qn

Pn

� �

with components

Qn ¼ Eð2n� 2Þ; Pn ¼
c

x
E0ð2n� 2Þ (3.43)

proportional to the field and its derivative at the left edge of

the nth cell. These components are real. Therefore they auto-

matically correspond to the currentless field and can be para-

metrized as

Sn ¼ enn
cos hn

sin hn

� �
(3.44)

(compare with Eq. (2.9)). Note that this is the currentless

state on the basis of standing waves, while in Sec. 2.2 the

basis of running waves was used.

Using Maxwell equations and appropriate boundary con-

ditions at the interfaces of the layers, one obtains the

dynamic equation

Snþ1 ¼ T̂Sn: (3.45)

Here, T̂ n is the unimodular matrix with elements

T11 ¼ cos ua cosub � Z�1
a Zb sin ua sin ub;

T12 ¼ Za sinua cos ub þ Zb cos ua sin ub;

T21 ¼ �Z�1
a sin ua cos ub � Z�1

b cos ua sin ub;

T22 ¼ cos ua cos ub � ZaZ�1
b sin ua sin ub:

(3.46)

They depend on the cell number n, due to randomized refrac-

tive indices Eq. (3.41) entering both the impedances Za,b(n)

and phase shifts ua,b(n),

uaðnÞ ¼
1

2
kaðnÞ ¼ u½1þ d�aðnÞ�;

ubðnÞ ¼
1

2
kbðnÞ ¼ 6u½1þ d�bðnÞ�;

(3.47)

with u¼ k/2.

In nn, hn terms, dynamic equations read

nnþ1 � nn ¼ UðhnÞ; (3.48)

tanhnþ1 ¼
T21 þ T22 tan hn

T11 þ T12 tan hn

� 
; (3.49)

where now

UðhÞ ¼ 1

2
ln
ðT11 þ T12 tan hÞ2 þ ðT21 þ T22 tan hÞ2

1þ tan2 h
: (3.50)

Going to the limit n ! 1 and using Eqs. (2.24) and (2.25)

for localization length ln¼ c�1 we obtain

1

ln
¼ �hUðhÞist; (3.51)

where averaging in the r.h.s. is taken over the stationary dis-

tribution of phase h.

In the case of weak disorder,

r2 � 1 and ðruÞ2 � 1;

this distribution q(h) can be explicitly found within the

framework of a proper perturbation theory. Expanding the

exact h-map Eq. (3.48) up to the second order in perturba-

tion59 and taking into account the uncorrelated nature of the

disorder (see Eq. (3.42)), one obtains

hnþ1 � hn ¼� /� daðnÞUðhnÞ
� dbðnÞUðhn � /=2Þ � r2WðhnÞ; (3.52)

where

UðhÞ ¼ uþ sin u cosð2h� uÞ
WðhÞ ¼ u½cosð2h� 2uÞ6 cosð2h� 2/Þ� þ sin u

� ½sin h sinðh� uÞ6sinðh� /=2Þsinðh� u� /=2Þ�
þ sin2 u sinð4h� 2u� /Þcos/; (3:53)

“plus” stands for the H-array, and “minus” refers to the

M-array, and

/ ¼ k; H-array

0; M-array

	
(3.54)

is the unperturbed Bloch phase shift / over a unit (a,b) cell.

Now, one should write down the Fokker–Plank equation

related to the dynamic equations (3.52)

d2

dh2
½U2ðhÞ þ U2ðh� /=2Þ�qðhÞ

þ 2
d

dh
/
r2
þWðhÞ

� 
qðhÞ ¼ 0; (3.55)

find it normalized in the p-periodic solution, and calculate

the average in the r.h.s. of Eq. (3.51).

For an H-array, this program can be easily realized.

Indeed, in such a structure the Bloch phase Eq. (3.54) is
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nonzero, and for weak disorder the term in Eq. (3.55) con-

taining //r2 prevails over the others. Therefore, phase distri-

bution within the main order of perturbation theory is

uniform

qðhÞ ¼ 1=p: (3.56)

Substituting this probability density into the definition (3.51)

and using Eqs. (3.52) and (3.53) one gets

1=ln � c ¼ r2 sin 2u:

In the long-wave limit, where the phase shift u is small, this

result yields asymptotic values

ln �
k2

p2r2
; k
 1:

This result gives rise to standard k-dependence, ln ! k2

when k ! 1. In the case of uniform distribution of d over

the interval [�Q�, Q�] considered in Sec. 3, it exactly coin-

cides with the long-wave asymptotic value Eq. (3.20) of

localization length l.
A principally different situation emerges for the M-

array. In this case the Bloch phase Eq. (3.54) is exactly zero.

As a result, W(h)¼�U(h)U0(h) in Eq. (3.53), and Eq. (3.55)

leads to a highly nonuniform phase distribution

qðhÞ ¼ 1

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 � sin2u

q
=UðhÞ: (3.57)

Figure 19 displays perfect agreement between analytical

expressions (3.56) and (3.57) and data obtained by the itera-

tion of the exact map Eq. (3.45).

To calculate the Lyapunov exponent via Eq. (3.51) one

needs to perform an averaging with the distribution q(h) given

by Eq. (3.57). Surprisingly, the use of Eqs. (3.51), (3.52), and

(3.57) results in zero Lyapunov exponent51 in the main (sec-

ond order) approximation�r2. Therefore, the Lyapunov expo-

nent is determined by the next orders of perturbation theory.

Unfortunately, direct evaluation of high order terms in

q(h) is rather cumbersome because of huge technical com-

plexity.51 The crucial step which enables authors of Ref. 52

to resolve the problem is the following. It is known that

essential calculation difficulties are often related to non-

proper selection of dynamic variables. To understand how

these variables should be chosen, let us analyze the numeri-

cal data displayed in Fig. 19. The b-panel in this figure dem-

onstrates that the trajectory (i.e., the sequence of points (Qn,

Pn)) has the form of a fluctuating ellipse specified by an

angle with respect to the axes, and by fixed aspect ratio. This

results in strongly nonuniform phase distribution (d-panel in

Fig. 19). Therefore, one should introduce new variables ~Qn,
~Pn by rotating and rescaling the axes Q, P so that the trajec-

tory transforms into a fluctuating circle. Then, one can

expect that the distribution of a new phase Hn in the consid-

ered approximation will be uniform.

To follow this recipe, let us rotate the vector S! ~S ¼ R̂S

with the help of unimodular matrix

R̂ ¼

ffiffiffi
g
p

cos s
ffiffiffi
g
p

sin s

� sin sffiffiffi
g
p

cos sffiffiffi
g
p

������
������;

where the angle s describes rotation of the axes in S-space,

with further rescaling of the axes due to free parameter g. In

new coordinates the expressions (3.45) and (3.51) conserve

their forms, however, with the rotated transfer matrix

~̂T ¼ R̂T̂ R̂
�1
; ~Sn ¼ eNn

cos Hn

sin Hn

� �
: (3.58)

Now the distribution q(H) for the new phase H can be found

starting from the quadratic expansion of Eq. (3.48) with new

coefficients Eq. (3.58) and /¼ 0,

Hnþ1 �Hn ¼ ½gaðnÞ � gbðnÞ�VðHnÞ þ r2VðHnÞV0ðHnÞ:
(3.59)

Here, the function V(H) is

VðHÞ ¼ sin u sinð2s� uÞsin 2H

þ g
2
½u� sinu cosð2s� uÞ�½cos 2H� 1�

� 1

2g
½uþ sin u cosð2s� uÞ�½cos 2Hþ 1�: (3.60)

The stationary Fokker–Plank equation corresponding to the

H-map Eq. (3.59) reads

d

dH
V2ðHÞ d

dH
qðHÞ þ VðHÞV0ðHÞqðHÞ

� 
¼ 0:

From this equation one gets that the phase distribution is uni-

form, q(H)¼ 1/p, and the trajectory is, indeed, a fluctuating

circle, provided that

FIG. 19. (Ref. 52) (a) The phase space trajectory generated using Eq.

((3.45)) for an H-array with N¼ 104, u¼p/15, for zero disorder (solid

circle), and for r2¼ 0.003 (scattered points). (b) One trajectory for an M-

array with N¼ 106, u¼ 2p/5, r2¼ 0.003. (c) q(h) from Eq. ((3.45)) for an

H-array (histogram), and Eq. ((3.56)) (horizontal line); (d) q(h) from Eq.

((3.45)) for an M-array (histogram), and Eq. ((3.57)) (solid curve).
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d

dH
VðHÞV0ðHÞ ¼ 0: (3.61)

With the use of Eqs. (3.60) and (3.61) we can now obtain the

desired expressions for the angle s, parameter g, and func-

tion V(H) (which is actually no longer H-dependent),

s ¼ u
2
; g2 ¼ uþ sin u

u� sin u
;

VðHÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 � sin2u

q
: (3.62)

The results presented in Fig. 20 confirm success of the cho-

sen approach: in new variables the trajectory is a fluctuating

circle, and phase distribution is uniform.

The Lyapunov exponent c can now be obtained via Eq.

(3.51) with the change hn ! Hn. Taking into account that c
vanishes within the quadratic approximation in disorder, we

expand the H-map of the form Eq. (3.48) with the coeffi-

cients Eq. (3.58) up to the fourth order in perturbation. By

substituting the resulting expression into Eq. (3.51) and

expanding the logarithm within the same approximation, af-

ter averaging over Hn with uniform distribution, we arrive at

the final expression

1

ln
¼ fr4

4

½ð2u2 � sin2 uÞcos u� u sin u�2

u2 � sin2 u
: (3.63)

Here, the constant

f ¼ hdðnÞ
4i � hdðnÞ2i2

hd2i2

is specified by the form of distribution of da,b(n). For Gaus-

sian and flat distributions we have f¼ 0, �6/5, respectively.

Equation (3.63) determines the asymptotic values for

large k
 max(r,1),

1

ln
� c � 24

3352
ðfþ 2Þr4k8;

which results in quite a surprising wavelength dependence of

localization length, ln ! k8. Thus, the dependence ln ! k6,

numerically found for large k in Refs. 43 and 44 and con-

firmed later on should be regarded as the intermediate one,

apparently emerging due to not sufficiently large lengths N,

over which the averaging of c is performed.

4. Localization in complex media

4.1. Nonreciprocal transmission in magnetoactive optical
structures

In this subsection we present the results of an analytical

and numerical study of Anderson localization of light propa-

gating through random magnetoactive layered structures.

We demonstrate that an interplay between strong localiza-

tion and magnetooptical effects produces a number of nonre-

ciprocity features in the transmission characteristics.

Magnetooptical effects and nonreciprocity are widely

exploited in modern optics and applied physics.22,82 In par-

ticular, magnetoactive periodic structures are currently

attracting growing attention.83,84 The main phenomena of in-

terest are the enhanced Faraday effect on resonances85 and

one-way propagation (nonreciprocal transmission)86–89

employed for the concept of optical insulators. The resonant

Faraday Effect has also been shown in connection with the

localization of light in random layered structures.35

Here, we examine the transmission properties of one-

dimensional random layered structures with magneto-optical

materials. We employ short-wavelength approximation,

where the localization is strong, and consider both Faraday

and Voigt geometries. In the Faraday geometry, magnetoop-

tical correction to the localization length l results in a signifi-

cant broadband nonreciprocity and polarization selectivity in

the typical, exponentially small transmission. In the

Voigt geometry, averaging over random phases sup-

presses the magnetooptical effect, in contrast to the case of

periodic structures, where it can be quite pronounced.86,88 At

the same time, in both geometries we reveal nonreciprocal

frequency shifts of narrow transmission resonances, corre-

sponding to the excited localized states inside the struc-

ture.9,78,90,91 This offers efficient unidirectional propagation

at the given resonant frequency.

Consider light transmission through a long stack com-

posed of magnetooptical materials in the short wavelength

approximation. In the localized regime, we can neglect in

Eq. (2.21) the external interface transfer matrices F̂
0a

, F̂
b0

just replacing the exact matrix T̂ by the truncated matrix T̂
0

T̂
0 ¼ F̂NŜNF̂N�1ŜN�1F̂N�2…F̂2Ŝ2F̂1Ŝ1: (4.1)

Then, if the wavelength within the kth layer is much shorter

than the variance of the layer thickness,56 then the phases uk

modulo 2p in the propagation matrices Ŝj Eq. (2.20) are in-

dependent and nearly uniformly distributed in the range (0,

2p). In this approximation, transmittance corresponding to

the transfer matrix Eq. (4.1) after averaging over all the

phases uk is reduced to the product of transmittances of sep-

arate layers49 and, furthermore, to the product of transmittan-

ces of the interfaces only56

lnðT Þ �
X2N

j¼1

ln sj; sj ¼ 1=jðF̂jÞ11j
2: (4.2)

Substitution of Eq. (4.2) into Eq. (2.1) in the limit N ! 1
yields a simple expression for the localization length

1

l
¼ 1

2
lnjðF̂abÞ11ðF̂

baÞ11j (4.3)

in the short-wavelength approximation.

FIG. 20. (Ref. 52) (a) Phase space trajectory in new variables ð ~Q; ~PÞ; (b)

distribution q(H) generated by the transformed map with Eqs. ((3.58) and

(3.62)), for c¼ 0, u¼ 2p/5, r2¼ 0.02, and N¼ 107.
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This result can be easily extended to any number of

alternating layers. For instance, considering a random struc-

ture consisting of three types of alternating layers, “a,” “b,”

and “c,” one has

1

l
¼ 1

3
lnjðF̂abÞ11ðF̂

bcÞ11ðF̂
caÞ11j:

Transmission through a one-dimensional lossless linear me-

dium is always reciprocal if there is only one (but propagat-

ing in two directions) mode in the system. Indeed, while the

forward transmission of the wave incident from the left of

the medium is described by the 2� 2 transfer matrix T̂ with

transmission coefficient T and transmittance T , the back-

ward transmission of the reciprocal wave incident from the

right is characterized by the inverse transfer matrix T̂�1 with

the same transmission coefficient and transmittance.49,56

If the system possesses two or more uncoupled modes la-

beled by index 1, the waves are marked by propagation direc-

tion t and mode indices: ht,1. Still, the forward and backward

propagation of each mode 1 through the system with incident

waves of types (þ,1) and (�,1) are described by the 2� 2

transfer matrices T̂ 1 and (T̂ 1)�1 characterized by the same

transmittance T 1. However, the wave reciprocal to (þ,1) is

determined by the time-reversal operation, which changes

t! �t (because of the k! �k transformation), but can also

affect 1.82 In particular, if the time reversal operation changes

the sign of the mode index (1 ! �1), then the reciprocal

wave will be (�, �1) rather than the backward wave of the

same mode (�, 1). Accordingly, transmittance of the mutually

reciprocal waves through the system, T 1 and T �1, can be dif-

ferent. This signals nonreciprocity in the system.

Nonreciprocity in the system under consideration origi-

nates from the difference between the modes 1 and �1, and

does not depend explicitly on the direction of incidence t.

Therefore, in practice, it is sufficient to compare only for-

ward transmissions of the modes 61, described by the trans-

fer matrices T̂61 and transmittances T 61.

There are two main geometries typical for magnetoopti-

cal problems:22 the Faraday geometry, where magnetization

is collinear with the direction of propagation of the wave,

and the Voigt (or Cotton–Mouton) geometry, where magnet-

ization is orthogonal to the direction of propagation of the

wave (see Fig. 21). Below we study the averaged transmis-

sion decrement and individual transmission resonances in

both geometries and show that propagation of light in disor-

dered magnetoactive layered media offers nonreciprocal

transmission.

In the Faraday geometry both magnetization and the

wave vector are directed across the layers, i.e., along the z
axis (see Fig. 21). We assume that magnetic tensor is equal

to one, and magnetooptical effects are described exclusively

by the dielectric tensor, which in the Faraday geometry has

the form22

ê ¼
e �iQ 0

iQ e 0

0 0 e

������
������:

The eigenmodes of the problem are circularly polarized

waves of magnetic H

Ht;1 ¼ Ht;1ffiffiffi
2
p

1

i1
0

0
@

1
Aeiðtkz�xtÞ; t; 1 ¼ 61; (4.4)

and electric E

Et;1 ¼ it1
k0

k
Ht;1 (4.5)

fields. Here, Ht,1
(Et,1) are the wave amplitudes, whereas k is

the propagation constant affected by the magnetization pa-

rameter q, and, depending on 1:

k ¼ nk0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1q

p
; n ¼

ffiffi
e
p
; k0 ¼

x
c
; q ¼ Q

e
: (4.6)

In the linear approximation in q, k ^ nk0(1þ 1q/2).

Parameter 1 is the mode index, which determines the

direction of rotation of the wave field. In this manner, the

product tr represents helicity

v ¼ t1;

which distinguishes the right-handed (v¼þ1) and left

handed (v¼�1) circular polarizations defined with respect

to the direction of propagation of the wave. Note that time

reversal operation keeps helicity unchanged, whereas 1
changes its sign.82 Thus, the reciprocal wave is given by

H�t,�1, precisely as described above.

The total field in a layer is the sum Hþ,1þH�,1 of eigen-

vectors Eq. (4.4) with amplitudes H6,1. Consider wave trans-

formation at the interface between the media “a” and “b.”
The helicity of the wave flips upon reflection and remains

unchanged upon transmission. As a result, parameter 1
remains unchanged, so that there is no coupling between the

modes with 1¼þ1 and 1¼�1 (see Fig. 21), and these

modes can be studied independently. From now on, for the

sake of simplicity, we omit 1 in superscripts and write explic-

itly only the values of direction parameter t¼61.

FIG. 21. (Ref. 34) A schematic picture of wave transmission and reflection

from a random-layered structure consisting of two types of alternating layers

“a” (here—a magnetoactive material) and “b” (here—air) with random

widths. Magnetization of the medium, wave polarizations, and directions of

propagation are shown for the Faraday and Voigt geometries.
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Using the standard boundary conditions for the wave in

electric and magnetic fields at the “a”–“b” interface, for nor-

malized fields we have

h ¼ k0

k

Hþ

H�

� �
; ha ¼ F̂

ab
hb

with the normalized interface transfer matrix

F̂
ab ¼ 1

2
ffiffiffiffiffiffiffiffiffi
kakb

p kb þ ka kb � ka

kb � ka kb þ ka

����
����; (4.7)

where ka,b are the wave numbers Eq. (4.6) in the correspond-

ing media.

Calculating the localization decrement from Eq. (4.3)

with Eqs. (4.6) and (4.7), in the linear approximation in q we

obtain

j ¼ 2ln
ka þ kb

2
ffiffiffiffiffiffiffiffiffi
kakb

p ’ jð0Þ þ jð1Þ; jð0Þ ¼ ln
ðna þ nbÞ2

4nanb
;

jð1Þ ¼ r
2
ðqa � qbÞ

na � nb

na þ nb
: (4:8)

Thus, the localization decrement acquires the first-order

magnetooptical correction j(1) caused by the Faraday

effect. This correction depends on 1, i.e., on the polarization

helicity v and the propagation direction t through 1¼ vt.

For reciprocal waves with the same v and opposite t, j(1)

has opposite signs. This signals nonreciprocal localization

in a Faraday random medium. In practice, the nonreciprocal

difference in transmission decrements Eq. (4.8) can be

observed by changing the sign of either propagation direc-

tion t (with helicity being fixed), or polarization v, or mag-

netization q.

Despite the fact that magnetooptical correction to the

localization decrement is small in magnitude, j(1) � j(0), it

still might result in a significant difference in the typical

transmission spectrum. This difference is described by an

additional factor !exp [�2 Nj(1)] in transmittance, which is

exponential with respect to the length of the structure.

Hence, small correction Eq. (4.8) brings about significant

broadband nonreciprocity or polarization selectivity in a typ-

ical small transmission when N jj(1)j 	 1.

Figure 22 shows the dependence of localization decre-

ment on the magnetization parameter Q¼ eq calculated

numerically and compared to the analytical result Eq. (4.8).

Numerical simulations were performed for the structure con-

taining N ¼ 2N¼ 90 alternating layers of air (e¼ 1, Q¼ 0)

and bismuth iron garnet (BIG) with dielectric constant

e¼ 6.25 and magnetooptic parameter reaching Q¼ 0.06. The

thicknesses of layers were randomly distributed in the range

from 50 to 150 lm (i.e., w¼ 100 lm, d¼ 50 lm), whereas

the excitation wavelength was 632 nm. The averaging was

performed over 105 realizations of the random sample. One

can see excellent agreement between numerical simulations

and analytical results showing linear splitting of the 1¼ 1

and 1¼�1 localization decrements as a function of the mag-

netooptic parameter.

In the Voigt geometry, the dielectric tensor is22

ê ¼ e
1 0 iq
0 1 0

�iq 0 1

������
������:

The first-order interaction of the wave with the magnetiza-

tion occurs only upon oblique propagation of the wave in the

xz plane, i.e., when kx¼ const= 0 (see Fig. 21).

The eigenmodes of the problem are the TE mode, which

is uncoupled from magnetization, and the TM mode with

tangential components

Ht;1
y ¼ Ht;1eið1xk?þtzkjj�xtÞ; Et;1

x ¼ At;1Ht;1
y :

Here, parameters t¼61 and 1¼61 indicate propagation in

the positive and negative z and x directions, respectively,

kjj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2

x

p
, k\¼ jkxj, whereas

At;1 ¼ � A�t;1ð Þ� ¼
i1qk? þ tkjj
eð1� q2Þk0

; k ¼ nk0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p
: (4.9)

In the linear approximation in q, At,1 ^ (tkjj þ i1qk\)/(ek0),

and k ^ nk0, so that magnetization affects imaginary parts

(i.e., phases) of the amplitudes At,1, and does not affect the

propagation constant, cf. Eqs. (4.5) and (4.6).

In the Voigt geometry, direction of the transverse wave

vector component, 1, serves as the mode index. The mutually

reciprocal waves are Ht,1 and H�t,�1, because the time rever-

sal transformation reverts the whole wave vector, k 7! �k.

The parameter 1 is not changed upon reflection and

transmission through the layers, i.e., modes with 1¼61 are

uncoupled from each other. Therefore, for the sake of sim-

plicity we omit the mode index in superscripts and write ex-

plicitly only the values of the direction parameter t¼61.

Using standard boundary conditions for the electric and

magnetic fields of the wave at the “a”–“b” interface, for the

normalized interface transfer matrix F̂ab we obtain88

F̂
ab ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4Re Aþa ReAþb

q Aþb þ Aþ�a Aþ�a � Aþ�b

Aþa � Aþb Aþa þ Aþ�b

�����
�����:

FIG. 22. (Ref. 34) Localization decrement j vs. magnetooptical parameter

Q for opposite modes propagating through a two-component random struc-

ture in the Faraday geometry (see details in the text). The modes with

1¼61 correspond to either opposite circular polarizations or propagation

directions. Numerical simulations of exact equations (symbols) and the theo-

retical formula (4.8) (lines).

Low Temp. Phys. 38 (7), July 2012 Gredeskul et al. 593

Downloaded 06 Aug 2012 to 132.72.138.1. Redistribution subject to AIP license or copyright; see http://ltp.aip.org/about/rights_and_permissions



In contrast to the Faraday geometry, in Voigt geometry

the linear magnetooptical correction changes only the phases

of transmission and reflection coefficients, whereas correc-

tions to the interface transmittance start with the terms ! q2.

In the short-wave limit, only these transmittances determine

the total transmittance, Eq. (4.2). Therefore, a short-

wavelength transmission through a random multilayered

stack is reciprocal and is not affected by magnetization in

the first-order approximation. In the short-wave limit, this

statement remains true for any number of types of alternating

layers. It was verified numerically for the three-layer sys-

tem.34 At the same time, a periodic structure with a cell con-

sisting of three different layers (which breaks the mirror

reflection symmetry) can demonstrate significant nonreci-

procity,88,89 but beyond the short-wave approximation.

Averaged localization decrement is associated with ex-

ponential decay of the incident wave deep into the infinite

sample.5,39,49,56 For a finite sample, this is so only for typical

realizations. However, there exist some resonant realizations

of the sample at a given frequency (or, equivalently, resonant

frequencies for a given realization), where transmission is

anomalously high and is accompanied by the accumulation

of energy inside the sample.76,90,91 Such resonant transmis-

sion corresponds to excitation of the Anderson localized

states (quasi-modes) inside the sample.

Akin to the resonant localized states in photonic crystal

cavities, transmission resonances in random structures are

extremely sensitive to small perturbations: realization,76

absorption,91 nonlinearity,31 and, as we show here,

magnetoactivity.

Figure 23 shows transmission spectra for two modes

1¼61 (i.e., either with opposite helicities or propagation

directions) in one realization of a magnetooptical sample in

the Faraday geometry. Parameters of the sample are the

same as in Sec. 3.1 with Q¼ 0.06. One can see strong split-

ting of the 1¼61 transmission resonances, which have

exponentially narrow widths91 ! j exp(�jN)/2w. This

offers strongly nonreciprocal, practically unidirectional

propagation or polarization selectivity in vicinity of resonant

frequencies.

To estimate the splitting of resonances we note that

wavenumbers in magnetooptical materials are shifted due to

the Faraday Effect (Eq. (4.6)). Hence, the shifts of resonant

wavenumbers of a random Faraday medium can be esti-

mated by averaging of this shift over different materials in

the structure:

Dkres ’ 1
qnk0

2
; (4.10)

where ð…Þ stands for some average of (…). Using qn
� (qanaþ qbnb)/2 for the estimation in a two-component

structure, we obtain Dkres � �1 3.6 nm, which agrees with

the 1-dependent splitting observed in Fig. 23.

Figure 24 displays the differential transmission for the

waves with 1¼þ1 and 1 lying in a narrow frequency range

in Fig. 23. In agreement with estimation Eq. (4.10), one

observes the linear dependence of the resonance splitting on

magnetization.

In the Voigt geometry, the resonances also allow nonre-

ciprocal transmission and demonstrate splitting of the reso-

nant frequencies. In Fig. 25, differential transmission is

shown for reciprocal waves with 1¼61 in vicinity of one

resonance for the three-component structure considered in

Sec. 3.2. The splitting is very small in this case, and 1¼þ1

and 1¼�1 resonances overlap significantly. Because of this,

FIG. 23. (Ref. 34) Transmission spectra of a random magnetooptical sample

in the Faraday geometry (see details in the text) for waves with 1¼61.

While the averaged localization decrements are only slightly different (Fig.

22), all individual resonances are shifted significantly as compared with

their widths, Eq. (4.10).

FIG. 24. (Ref. 34) Differential transmittance, T þ�T �, for two resonances

from Fig. 22 as dependent on the value of magnetooptical parameter Q, cf.

Eq. (4.10).

FIG. 25. (Ref. 34) Differential transmittance, T þ�T �, in the vicinity of a

single resonance in the Voigt geometry (see Sec. 3.2 for details) as depend-

ent on the magnetooptical parameter Q.
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the differential transmittance in Fig. 25 is tiny, its amplitude

linearly grows with Q, whereas the frequency positions of its

maximum and minimum correspond to the width of the orig-

inal resonance and are practically unchanged.

Unlike the wave-number shift in the Faraday geometry,

the noreciprocal shift of resonant frequencies in the Voight

geometry arises from the phases of the amplitudes A, Eq.

(4.9). These phases are responsible for the phases estimated

as / � q(1k\)/(tkjj): q tan h, where h is the angle of propa-

gation with respect to the z axis. Phases accumulated at a

layer effectively shift the wavenumbers as tDkjj ¼Dk cos h
� //w, where w is the thickness of the layer. Averaging over

different materials in the random layered structure, we esti-

mate the nonreciprocal shift of the resonant wavenumber:

Dkres �
q sin h

w cos2 h
¼ 1

qjsinhj
w cos2 h

:

This shift is 1-dependent, i.e., nonreciprocal, and much

smaller than the Faraday-geometry shift Eq. (4.10) as

kw> kd
 2p in the short-wavelength limit. For the parame-

ters in use, with Q¼ 0.06, we have Dkres � �13�10�4 nm,

which agrees with the data plotted in Fig. 25.

4.2. Charge transport in disordered graphene

Shortly after the discovery of highly unusual physical

properties of graphene it was realized that the electron trans-

port in this material had many common features with the

propagation of light in dielectrics. Historically, the analogy

between Maxwell equations and those used in the relativistic

electron theory has been discussed in different contexts and

for various purposes (see, for example,47,92–94) since 1907,

when Maxwell equations were reduced95 to an alternative,

more concise form by introducing a complex field

F¼Eþ iH:

cq̂ � rW ¼ �n@W=@t; (4.11)

where W is the 4-vector with components �Fxþ iFy, Fz, Fz,

Fxþ iFy, n is the refraction index, and the components of the

3-vector q̂ are the Dirac matrices q̂i, i¼ 1,2,3 (Pauli matrices

in which the units are replaced by the unit 2� 2 matrices).

In the last few years this activity has perked up due to

recent developments in the physics of graphene. Nowadays

it is well understood that under some (rather general) condi-

tions, Dirac equations describing charge transport in a gra-

phene superlattice created by applying inhomogeneous

external electric potential could be reduced to Maxwell

equations for the propagation of light in a dielectric medium.

To better understand the physics of charge transport in gra-

phene subject to a coordinate-dependent potential, in what

follows we compare the results for graphene with those for

the propagation of light in layered dielectric media (for more

analogies between quantum and optical systems see Refs. 96

and 97). Additional analogies, not discussed here, also exist

with the transport and localization of phonons in different

kinds of periodic and random one-dimensional

structures.98–100

As it was shown above, the light transport of electro-

magnetic waves in multilayered media is described in terms

of the transfer matrices of two types. The first type is formed

by diagonal matrices Ŝj corresponding to the propagation of

wave through the jth layer. These matrices are the same as in

Eq. (2.20) (up to the signs of the exponent). The second type

is formed by the interface transfer matrices F̂j,(jþ1) describ-

ing transformation of the amplitudes of electromagnetic

waves at the interface between jth and (jþ 1)-th layers and

having the form

F̂j;jþ1 ¼
1

2 cos hjþ1

G
ðþÞ
j;jþ1 G

ð�Þ
j;jþ1

G
ð�Þ
j;jþ1 G

ðþÞ
j;jþ1

�����
�����; (4.12)

where

G
ð6Þ
j;jþ1 ¼ cos hjþ16cos hj � sgnð�j�jþ1Þ

Zjþ1

Zj
(4.13)

for s-polarized waves, and

G
ð6Þ
j;jþ1 ¼

Zjþ1

Zj
coshjþ16coshj � sgnð�j�jþ1Þ (4.14)

for p-polarized waves. Here, hj is the angle of propagation

within the jth layer, Zj and �j are the impedance and the

refractive index of the jth layer, respectively, defined by

Eq. (3.1). Signs 6 correspond, respectively, to R- and

L-dielectric layers with positive and negative refractive

indices.

In the case of charge transport in a graphene superlattice

created by a piecewise-constant, electrostatic potential

depending on one coordinate x in the plane (x, y) of the gra-

phene layer, the analogues transfer matrix, which describes

the transition through the interface between adjacent regions

with different values of the potential, has the form47

F̂ j;jþ1 ¼
1

2 cos hjþ1

GðþÞj;jþ1 Gð�Þj;jþ1

ðGð�Þj;jþ1Þ
� ðGðþÞj;jþ1Þ

�

�����
�����; (4.15)

where

Gð6Þj;jþ1 ¼ e�ihjþ16e6ihj � sgn½ðe� ujÞðe� ujþ1Þ�: (4.16)

Here, the hj is given by equation tan hj¼ b=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðe� ujÞ2 � b2

q
,

where b is the projection of the dimensionless momentum on

y axis, e and uj are the dimensionless energy of the charge car-

rier and the scalar potential of the jth layer. If hj is real, it

coincides with the angle of propagation of electron within the

jth layer.

Comparison of Eqs. (4.12) and (4.15) shows that the role

of refractive index � in graphene is played by the difference

e� u. In particular, a layer, in which the potential exceeds

the energy of the particle, u> e, is similar to an L-slab with

negative refractive index (metamaterial), while a layer where

u< e is similar to normal material. It is due to this similarity

that a junction of two regions having opposite signs of u� e
(the so-called p–n junction) focuses Dirac electrons in graph-

eme,48 in the same way as an interface between left- and

right-handed dielectrics focuses electromagnetic waves.16

This analogy is not complete: although the equations are

akin, the boundary conditions are, generally speaking, differ-

ent. As a result Eq. (4.16) (for graphene) does not contain

Low Temp. Phys. 38 (7), July 2012 Gredeskul et al. 595

Downloaded 06 Aug 2012 to 132.72.138.1. Redistribution subject to AIP license or copyright; see http://ltp.aip.org/about/rights_and_permissions



the factor Zjþ1/Zj, which is present in Eqs. (4.13) and (4.14),

and determines the reflection coefficients at the boundary

between two dielectrics.101 Another important distinction

between transfer matrices F̂ (graphene) and F̂ (electromag-

netic waves) is that F̂ is a complex-valued matrix, while F̂
is always real. This is a manifestation of the fundamental dif-

ference between graphene wave functions and electromag-

netic fields in dielectrics. Graphene wave functions are

complex-valued spinors that describe two different physical

objects: particles (electrons) and antiparticles (holes). Elec-

tromagnetic fields are real, which reflects the fact that pho-

tons do not have antiparticles (an antiphoton is identical to a

photon). These distinctions bring about rather peculiar dis-

similarities between the conductivity of graphene and the

transparency of dielectrics.

However in the particular case of normal incidence

hj¼ hjþ1¼ 0 and equal impedances Zj¼ Zjþ1, transmission

of Dirac electrons through a junction is similar to the trans-

mission of light via an interface between two media with dif-

ferent refractive indices (but equal impedances). Such an

interface is absolutely transparent to light, and, therefore

both p–n and p–p junctions are absolutely transparent to the

Dirac electrons in graphene.48,102 This is related to the ab-

sence of backscattering and antilocalization of massless

Dirac fermions caused by their spin properties.29,30 This also

explains the Klein paradox103 (perfect transmission through

a high potential barrier) in graphene systems, and leads (to-

gether with symmetry and spectral flow arguments) to the

surprising conclusion that Dirac electrons are delocalized in

disordered 1D graphene structure, providing a minimal non-

zero overall transmission, which cannot be destroyed by

fluctuations, no matter how strong they are.104 However, this

statement (being correct in some sense) should be perceived

with a certain caution. Indeed, many features of Anderson

localization can be found in random graphene systems. It has

been shown in Ref. 94 that although wave functions of nor-

mally incident (h¼ 0) particles are extended and belong to

the continuous part of the spectrum, away from some vicin-

ity of h¼ 0, 1D random graphene systems manifest all the

features of disorder-induced strong localization. In particu-

lar, for a long enough, disordered graphene superlattice the

transmission coefficient T as a function of the angle of inci-

dence, h (or of the energy E, if h= 0 is fixed) has the typical

for Anderson localization shape (see Fig. 26).

Along with continuous directions of typical angles (or

energies), for which transmission is exponentially small,

there exists a quasi-discrete random set of directions, where

the sample is well transparent, i.e., the transmission coeffi-

cient is close to one. At these angles the wave functions are

exponentially localized (Fig. 27), with the Lyapunov expo-

nent (inverse localization length ln) being proportional to the

strength of disorder.

Charge transport in a graphene sheet subjected to a dis-

ordered electrostatic potential is determined by the ratio

between its values u(n) and the energy e of the particle. In

particular, in a randomly-layered potential uj¼ u0(j)þDuj (j
is the number of the layer, u0(j) is a nonrandom function, Duj

are independent random variables homogeneously distrib-

uted in the interval [�du, du]) it manifests essentially differ-

ent features in the following three different systems:94

(i) uj< e, u0(j) is a periodic function. In this case, a rela-

tively weak disorder drastically changes the transmis-

sion spectrum. All features of the spectrum of the

underlying periodic structure are washed out, and a

rather dense (quasi-)discrete angular spectrum

appears, with the corresponding wave functions being

localized at random points inside the sample (disor-

der-induced resonances). However, there is one fun-

damental difference from the usual Anderson

localization: in vicinity of normal incidence the trans-

mission spectrum of graphene is continuous with

extended wave functions, and the transmission coeffi-

cient is finite (T¼ 1 at h¼ 0). It is this range of angles

that provides the finite minimal conductivity, which is

proportional to the integral of T(h) over all angles h.

(ii) e� u0 (j)¼ const. Under these conditions, the trans-

mission of an unperturbed system is exponentially

small (tunnelling) and, rather unusually, gets

enhanced by the fluctuation of the potential.

(iii) e¼ 0, u0(j) is a periodic set of numbers with alternat-

ing signs. The behavior of charge carriers in potential

of this type is most unusual. It is characteristic of

two-dimensional Fermions and has no analogies in

electron and light transport. The disorder obliterates

the transmission peaks of the underlying periodic sys-

tem, makes the transparency zone around normal

angle of incidence much wider, and gives rise to a

new narrow peak in the transmission coefficient,

FIG. 26. (Ref. 47) Transmission coefficient T(h) for periodic (thin black

line) and disordered (bold blue line) graphene.

FIG. 27. (Ref. 47) Spatial distribution of wave function localized inside the

sample for h, marked by red arrow in Fig. 26.
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associated with wave localization in the random

potential. Unlike peaks in the periodic structure, the

wave function of this disorder-induced resonance is

exponentially localized. In distinction to case (i), the

transmission in (iii) is extremely sensitive to fluctua-

tions of the applied potential: relative fluctuations Du/

u0¼ 0.05 reduce the angular width of the transmission

spectrum more than four times.

Propagation of light in analogous L–R and R–R disor-

dered dielectric structures demonstrates completely different

behavior. As the degree of disorder (variations of the refrac-

tive index) grows, the averaged angular spectra quickly

reach their asymptotic “rectangular” shape: a constant trans-

mission in the region where all interfaces between layers are

transparent followed by an abrupt decrease in transmission

in the region of angles where the total internal reflection

appears.

4.3. Bistability of Anderson localized states in nonlinear media

The recently renewed interest in Anderson localization

is driven by a series of experimental demonstrations in

optics12–14 and Bose–Einstein condensates.15,105 One of the

important issues that has risen in these studies is that disor-

dered systems can be inherently nonlinear, so that an intrigu-

ing interplay of nonlinearity and disorder could be studied

experimentally.

Nonlinear interaction between propagating waves and

disorder can significantly change the interference effects,

thus fundamentally affecting localization.32,33,67,77 However,

most of the studies of localization in random nonlinear

media deal with the ensemble-averaged characteristics of the

field, such as the mean field and intensity, correlation func-

tions, etc. These quantities describe the averaged, typical

behavior of the field, but they do not contain information

about individual localized modes (resonances), which exist

in the localized regime in each realization of a random sam-

ple.9,67,77,91,106 These modes are randomly located in both

real space and frequency domain and are associated with the

exponential concentration of energy and resonant tunnelling.

In contrast to regular resonant cavities, the Anderson modes

occur in a statistically-homogeneous media because of the

interference of the multiply scattered random fields.

Although disorder-induced resonances in linear random sam-

ples have been the subject of studies for decades, resonance

properties of nonlinear disordered media have not been

explored so far.

In this section we present the study of the effect of nonli-

nearity on the Anderson localized states in a one-

dimensional random medium.31 As a result of interplay of

nonlinearity and disorder, bistability and nonreciprocity

appear upon resonant wave tunnelling and excitation of

disorder-induced localized modes in a manner similar to that

for regular cavity modes. At the same time, weak nonlinear-

ity has practically no effect on the averaged localization

background.

First, let us consider a stationary problem of the trans-

mission of a monochromatic wave through a one-

dimensional random medium with Kerr nonlinearity. The

problem is described by the equation,

d2W
dx2
þ k2½n2 � vjwj2�w ¼ 0; (4.17)

where w is the wave field, x is the coordinate, k is the wave

number in the vacuum, n¼ n(x) is the refractive index of the

medium, and v is the Kerr coefficient.

In the linear regime, vjwj2¼ 0, multiple scattering of the

wave on a random inhomogeneity n2(x) brings about Ander-

son localization. The main signature of the localization is ex-

ponential decay of wave intensity I¼ jwj2 deep into the

sample and, thus, an exponentially small transmission:1,2,5,56

I
ðtypÞ
out � Iin exp(�2L/l)� 1. Here, L is the length of the sam-

ple, and l is the localization length, which is the only spatial

scale of Anderson localization. Along with the typical wave

transmission, there is an anomalous, resonant transmission,

which accompanies excitation of the Anderson localized

states inside the sample and occurs at random resonant wave

numbers k¼ kres0.9,67,77,91,106 In this case, the distribution of

intensity in the sample is characterized by an exponentially

localized high-intensity peak inside the sample, Ipeak 
 Iin,

and a transmittance much higher than the typical one:

I
ðresÞ
out 
 I

ðtypÞ
out .

Excitation of each localized mode inside the random sam-

ple can be associated with an effective resonator cavity

located in the area of field localization and bounded by two

potential barriers with exponentially small transparencies.78

According to this model, the transmittance spectrum T(k, Iout)

in vicinity of a resonant wavelength for the case of weak non-

linearity (v jwj2� 1) is given in the form,10,31,91

Tðk; IoutÞ �
Iout

Iin

¼ Tres

1þ ½AvIout þ d�2
; (4.18)

where Tres is the transmission coefficient at resonance, and

dimensionless parameters A and d characterize, respectively,

the strength of the nonlinear feedback and the detuning from

the resonant wave number,

A ¼ 2Q

v
d ln kres

dIout

����
Iout¼ 0

; d ¼ 2Q 1� k

kres0

� �
: (4.19)

Equation (4.18) establishes a relation between the input

and output wave intensities, which is given by a cubic equa-

tion with respect to Iout. It has a universal form typical for

nonlinear resonators possessing optical bistability.107 From

Eq. (4.19) it follows that in the region of parameters

Ad < 0; d2 > 3; jvjIin >
8

3
ffiffiffi
3
p 1

jAjTres

;

the dependence Iout(Iin) is of the S-type, and the stationary

transmission spectrum T(k) is a three-valued function. In

most cases, one of the solutions is unstable, whereas the

other two form a hysteresis loop in the Iout(Iin) dependence

(see Figs. 28 and 29).

It is important to emphasize two features of the Eqs.

(4.18) and (4.19), describing nonlinear resonant transmission

through a localized state. First, they have been derived with-

out any approximations apart from the natural smallness of

the nonlinearity and Lorentzian shape of the spectral line.

Second, although resonant transmission and the effect of

nonlinearity and bistability owe their origin to the excitation
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FIG. 28. (Ref. 31) Nonlinear deformations of transmission spectra of two random resonances at different intensities of the incident wave. Numerical simula-

tions of the Eq. (4.17) (curves) and theoretical Eq. (4.18) (symbols) are shown for the case of defocusing nonlinearity, v> 0. Light-grey stripes indicate three-

valued regions for the high-intensity curves, where only two of them (corresponding to the lower and upper branches) are stable.

FIG. 29. (Ref. 31) Stationary and FDTD simulations showing hysteresis loops in the output vs input power dependence for three different resonances. Panel

(d) shows deformation of the transmitted Gaussian pulse corresponding to the hysteresis switching on resonance 2.
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of the Anderson localized mode inside a sample, Eqs. (4.18)

and (4.19) contain only quantities which can be found via

outside measurements.31

Figure 28 shows nonlinear deformations of the resonant

transmission spectra T(k) for different values of Iin, which

exhibit transitions to bistability. The analytical dependence

T(k) given by Eqs. (4.18) and (4.19) with parameters Tres, Q,

and A found from numerical experiments, are in excellent

agreement with the direct numerical solutions of Eq.

(4.17).108 In numerical simulations of stationary regime we

used the standard 4th order Runge–Kutta method. We note

that the incident field amplitude is a single-valued function

of the transmitted field. Thus, we solve second-order ordi-

nary differential equation Eq. (4.17) using transmitted field

value as the boundary condition for the equation.

The dimensionless parameters Tres and Q from Eqs.

(4.18) and (4.19), can also be estimated from a simple reso-

nator model of the Anderson localized states,9,78,91

Tres ¼
4T1T2

ðT1 þ T2Þ2
; Q�1 � T1 þ T2

4kres0l
; (4.20)

where

T1 � exp½�2xres=l�; T2 � exp½�2ðL� xresÞ=l�

are the transmission coefficients of the two barriers that form

the effective resonator, xres is the coordinate of the center of

the area of field localization; l is the localization length, and

L is the length of the sample.

Introducing a weak Kerr nonlinearity into the resonator

model, one can also estimate the nonlinear feedback parame-

ter A,

A � Q=n2T2; (4.21)

where n2 is the mean value of n2(x).

It is important to note that each disorder-induced reso-

nance is associated with its own effective cavity, so that the

disordered sample can be considered as a chain of randomly

located coupled resonators.11

Equations (4.20) and (4.21) enable one to estimate the

values of parameters describing the nonlinear resonant wave

tunnelling in Eqs. (4.20) and (4.21) by knowing only the ba-

sic parameters of the localization—the localization coordi-

nate and the localization length. In particular, substituting

Eqs. (4.20) and (4.21) into Eq. (4.19) and taking into account

that the most pronounced transmission peaks correspond to

localized states with x ^ L/2 and T1 � T2, we estimate the

incident power needed for bistability of localized states to be

jvjIin&
expð�2L=lÞ

kres0l
: (4.22)

For the parameters used in our simulations this gives quite a

reasonable value jvjIin & 10�5. If we increase the length of

the sample, the Q-factors of the resonances grow, and the

incident power needed to observe the bistability becomes

smaller.

To demonstrate temporal dynamics upon bistable reso-

nant tunnelling, an explicit iterative nonlinear finite-

difference time-domain (FDTD) scheme was implemented.

For precise modelling of the spectra of narrow high-Q
resonances, a fourth-order accurate algorithm was used, both

in space and in time,109 as well as the Mur boundary condi-

tions to simulate open boundaries and total-field/scattered-

field technique for exciting the incident wave. Sufficient ac-

curacy was achieved by creating a dense spatial mesh of 300

points per wavelength (dx¼ k/300). To assure stability of the

method in nonlinear regime, the time step was selected as

dt¼ dx/3c, and each simulation ran for N¼ 2�108 time steps.

To compare the results of FDTD simulations with the

steady-state theory, the transmission of long Gaussian pulses

with central frequencies and amplitudes satisfying conditions

Eq. (4.22) was considered, see Fig. 29(d). With an appropri-

ate choice of signal frequencies, we observe hysteresis loops

in the Iout(Iin) dependences, which are in excellent agreement

with stationary calculations, as shown in Figs. 29(a)–29(c).

Characteristic transitional oscillations accompany jumps

between two stable branches, and strong reshaping of the

transmitted pulse evidences switching between the two

regimes of transmission, Fig. 29(d). We note that different

choice of signal frequencies near the resonance can lead to

various other behaviors of output vs. input curves, with

transmission either increasing when nonlinear resonance fre-

quency shifts towards the signal frequency, or decreasing in

the opposite case.

In addition to bistability, the resonant wave tunneling

through a nonlinear disordered structure is nonreciprocical.

As is known for regular systems, nonsymmetric nonlinear

systems may possess nonreciprocal transmission properties,

resembling the operation of a diode. An all-optical diode is a

device that allows unidirectional propagation of a signal at a

given wavelength, which may become useful for many appli-

cations.110 A disordered structure is naturally asymmetrical

in the generic case, and one may expect a nonreciprocal res-

onant transmission in the nonlinear case. To demonstrate

this, we modeled propagation of an electromagnetic pulse

impinging the same sample from different sides and moni-

tored the transmission characteristics. One case of such non-

reciprocical resonant transmission is shown in Fig. 30(a).

We observe considerably different transmission properties in

opposite directions with the maximal intensity contrast

between two directions 7.5:1. Moreover, the threshold of

bistability is also significantly different for two directions:

there is a range of incident powers, for which the wave inci-

dent from one side of the sample is bistable, while there are

no signs of bistability for the incidence from the other side.

Figure 30(b) shows pulse reshaping for incidence from oppo-

site sides of the structure.

In this section we have presented the study of new mani-

festations of the interplay between nonlinearity and disorder.

It is shown that even weak nonlinearity dramatically affects

resonant transmission associated with the excitation of the

Anderson localized states leading to bistability and nonreci-

procity. Despite random character of the appearance of

Anderson modes, their behavior and evolution are rather

deterministic, and, therefore, these modes can be used for ef-

ficient control of light similar to regular cavity modes. These

results demonstrate that, unlike infinite systems, the Ander-

son localization in finite samples is not destroyed by weak

nonlinearity—instead it exhibits new intriguing features typ-

ical for resonant nonlinear systems.
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Conclusion

We have reviewed the transmission and localization

wave properties of complex disordered structures composed

of (i) left-handed metamaterials, (ii) magnetoactive optical

materials, (iii) graphene superlattices, and (iv) nonlinear

dielectric media. Interference origin of wave localization, to-

gether with strong energy concentration, makes Anderson

localization highly sensitive to weak modifications of the

material properties. We have shown that exotic properties of

novel materials can drastically modify the main features of

wave localization. This brings about anomalous pronounced

dependences of wave transmittance and localization length

on both wave and material parameters: frequency, angle of

incidence, polarization, magnetization, nonlinearity, etc. As

a result, remarkable phenomena appear, such as anti-(de-

)localization, unidirectional transmission, slow-light propa-

gation, and bistability.

We have described a number of novel features accompa-

nying wave localization in complex media, including: (i)

dramatic suppression of localization in mixed stacks with

left-handed metamaterials, (ii) Brewster, zero-e, and zero-l
delocalization, and (iii) anomalous transmission enhance-

ment in periodic metamaterials with only one disordered

electromagnetic characteristics, (iv) nonreciprocal localiza-

tion and unidirectional transmission through magnetoactive

disordered stacks, (v) angle-dependent transmission resonan-

ces in graphene superlattices, and (vi) bistability and nonre-

ciprocity of transmission resonances in nonlinear disordered

structures.

We believe that the results presented significantly extend

and enrich theory and potential application of wave localiza-

tion in complex disordered media. In particular, they provide

a theoretical toolbox that can serve for design of novel opti-

cal and electronic devices with unusual transport properties.
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