12 research outputs found

    Resolving issues with environmental impact assessment of marine renewable energy installations

    Get PDF
    ArticleThis Document is Protected by copyright and was first published by Frontiers. All rights reserved. it is reproduced with permission.Growing concerns about climate change and energy security have fueled a rapid increase in the development of marine renewable energy installations (MREIs). The potential ecological consequences of increased use of these devices emphasizes the need for high quality environmental impact assessment (EIA). We demonstrate that these processes are hampered severely, primarily because ambiguities in the legislation and lack of clear implementation guidance are such that they do not ensure robust assessment of the significance of impacts and cumulative effects. We highlight why the regulatory framework leads to conceptual ambiguities and propose changes which, for the most part, do not require major adjustments to standard practice. We emphasize the importance of determining the degree of confidence in impacts to permit the likelihood as well as magnitude of impacts to be quantified and propose ways in which assessment of population-level impacts could be incorporated into the EIA process. Overall, however, we argue that, instead of trying to ascertain which particular developments are responsible for tipping an already heavily degraded marine environment into an undesirable state, emphasis should be placed on better strategic assessment.Technology Strategy Boar

    Geolocator tracking seabird migration and moult reveal large-scale temperature-driven isoscapes in the NE Atlantic

    Get PDF
    This is the final version. Available op open access from Wiley via the DOI in this recordRationale By combining precision satellite-tracking with blood sampling, seabirds can be used to validate marine carbon and nitrogen isoscapes, but it is unclear whether a comparable approach using low-precision light-level geolocators (GLS) and feather sampling can be similarly effective. Methods Here we used GLS to identify wintering areas of northern gannets (Morus bassanus) and sampled winter grown feathers (confirmed from image analysis of non-breeding birds) to test for spatial gradients in δ13C and δ15N in the NE Atlantic. Results By matching winter-grown feathers with the non-breeding location of tracked birds we found latitudinal gradients in δ13C and δ15N in neritic waters. Moreover, isotopic patterns were best explained by sea surface temperature. Similar isotope gradients were found in fish muscle sampled at local ports. Conclusions Our study reveals the potential of using seabird GLS and feathers to reconstruct large-scale isotopic patterns

    A continuous-time state-space model for rapid quality-control of Argos locations from animal-borne tags

    Get PDF
    This is the final version. Available on open access from BMC via the DOI in this recordState-space models are important tools for quality control of error-prone animal movement data. The near real-time (within 24 h) capability of the Argos satellite system aids dynamic ocean management of human activities by informing when animals enter intensive use zones. This capability also facilitates use of ocean observations from animal-borne sensors in operational ocean forecasting models. Such near real-time data provision requires rapid, reliable quality control to deal with error-prone Argos locations. We formulate a continuous-time state-space model for the three types of Argos location data (Least-Squares, Kalman filter, and Kalman smoother), accounting for irregular timing of observations. Our model is deliberately simple to ensure speed and reliability for automated, near real-time quality control of Argos data. We validate the model by fitting to Argos data collected from 61 individuals across 7 marine vertebrates and compare model-estimated locations to GPS locations. Estimation accuracy varied among species with median Root Mean Squared Errors usually < 5 km and decreased with increasing data sampling rate and precision of Argos locations. Including a model parameter to inflate Argos error ellipse sizes resulted in more accurate location estimates. In some cases, the model appreciably improved the accuracy of the Argos Kalman smoother locations, which should not be possible if the smoother uses all available information. Our model provides quality-controlled locations from Argos Least-Squares or Kalman filter data with slightly better accuracy than Argos Kalman smoother data that are only available via reprocessing. Simplicity and ease of use make the model suitable both for automated quality control of near real-time Argos data and for manual use by researchers working with historical Argos data.Macquarie UniversityOffice of Naval ResearchIntegrated Marine Observing System - Animal Tracking FacilityOcean Tracking NetworkTaronga Conservation SocietyBirds CanadaInnovasea/VemcoCSIRO Oceans & AtmosphereNational Science Foundation Office of Polar Project

    Recovery of a temperate reef assemblage in a marine protected area following the exclusion of towed demersal fishing.

    Get PDF
    Marine Protected Areas MPA have been widely used over the last 2 decades to address human impacts on marine habitats within an ecosystem management context. Few studies have quantified recovery of temperate rocky reef communities following the cessation of scallop dredging or demersal trawling. This is critical information for the future management of these habitats to contribute towards conservation and fisheries targets. The Lyme Bay MPA, in south west UK, has excluded towed demersal fishing gear from 206 km(2) of sensitive reef habitat using a Statutory Instrument since July 2008. To assess benthic recovery in this MPA we used a flying video array to survey macro epi-benthos annually from 2008 to 2011. 4 treatments (the New Closure, previously voluntarily Closed Controls and Near or Far Open to fishing Controls) were sampled to test a recovery hypothesis that was defined as 'the New Closure becoming more similar to the Closed Controls and less similar to the Open Controls'. Following the cessation of towed demersal fishing, within three years positive responses were observed for species richness, total abundance, assemblage composition and seven of 13 indicator taxa. Definitive evidence of recovery was noted for species richness and three of the indicator taxa (Pentapora fascialis, Phallusia mammillata and Pecten maximus). While it is hoped that MPAs, which exclude anthropogenic disturbance, will allow functional restoration of goods and services provided by benthic communities, it is an unknown for temperate reef systems. Establishing the likely timescales for restoration is key to future marine management. We demonstrate the early stages of successful recruitment and link these to the potential wider ecosystem benefits including those to commercial fisheries

    Modelling the effects of prey size and distribution on prey capture rates of two sympatric marine predators

    Get PDF
    Understanding how prey capture rates are influenced by feeding ecology and environmental conditions is fundamental to assessing anthropogenic impacts on marine higher predators. We compared how prey capture rates varied in relation to prey size, prey patch distribution and prey density for two species of alcid, common guillemot (Uria aalge) and razorbill (Alca torda) during the chick-rearing period. We developed a Monte Carlo approach parameterised with foraging behaviour from birdborne data loggers, observations of prey fed to chicks, and adult diet from wateroffloading, to construct a bio-energetics model. Our primary goal was to estimate prey capture rates, and a secondary aim was to test responses to a set of biologically plausible environmental scenarios. Estimated prey capture rates were 1.5±0.8 items per dive (0.8±0.4 and 1.1±0.6 items per minute foraging and underwater, respectively) for guillemots and 3.7±2.4 items per dive (4.9±3.1 and 7.3±4.0 items per minute foraging and underwater, respectively) for razorbills. Based on species' ecology, diet and flight costs, we predicted that razorbills would be more sensitive to decreases in 0- group sandeel (Ammodytes marinus) length (prediction 1), but guillemots would be more sensitive to prey patches that were more widely spaced (prediction 2), and lower in prey density (prediction 3). Estimated prey capture rates increased non-linearly as 0- group sandeel length declined, with the slope being steeper in razorbills, supporting prediction 1. When prey patches were more dispersed, estimated daily energy expenditure increased by a factor of 3.0 for guillemots and 2.3 for razorbills, suggesting guillemots were more sensitive to patchier prey, supporting prediction 2. However, both species responded similarly to reduced prey density (guillemot expenditure increased by 1.7; razorbill by 1.6), thus not supporting prediction 3. This bio-energetics approach complements other foraging models in predicting likely impacts of environmental change on marine higher predators dependent on species-specific foraging ecologies
    corecore