27 research outputs found

    Ion size effects at ionic exclusion from dielectric interfaces and slit nanopores

    Full text link
    A previously developed field-theoretic model [R.D. Coalson et al., J. Chem. Phys. 102, 4584 (1995)] that treats core collisions and Coulomb interactions on the same footing is investigated in order to understand ion size effects on the partition of neutral and charged particles at planar interfaces and the ionic selectivity of slit nanopores. We introduce a variational scheme that can go beyond the mean-field (MF) regime and couple in a consistent way pore modified core interactions, steric effects, electrostatic solvation and image-charge forces, and surface charge induced electrostatic potential. We show that in the dilute limit, the MF and the variational theories agree well with MC simulation results, in contrast to a recent RPA method. The partition of charged Yukawa particles at a neutral dielectric interface (e.g air-water or protein-water interface) is investigated. It is shown that as a result of the competition between core collisions that push the ions towards the surface, and repulsive solvation and image forces that exclude them from the interface, a concentration peak of finite size ions sets in close to the dielectric interface. We also characterize the role played by the ion size on the ionic selectivity of neutral slit nanopores. We show that the complex interplay between electrostatic forces, excluded volume effects induced by core collisions and steric effects leads to an unexpected reversal in the ionic selectivity of the pore with varying pore size: while large pores exhibits a higher conductivity for large ions, narrow pores exclude large ions more efficiently than small ones

    Electrolytic depletion interactions

    Full text link
    We consider the interactions between two uncharged planar macroscopic surfaces immersed in an electrolyte solution which are induced by interfacial selectivity. These forces are taken into account by introducing a depletion free-energy density functional, in addition to the usual mean-field Poisson-Boltzmann functional. The minimization of the total free-energy functional yields the density profiles of the microions and the electrostatic potential. The disjoining pressure is obtained by differentiation of the total free energy with respect to the separation of the surfaces, holding the range and strength of the depletion forces constant. We find that the induced interaction between the two surfaces is always repulsive for sufficiently large separations, and becomes attractive at shorter separations. The nature of the induced interactions changes from attractive to repulsive at a distance corresponding to the range of the depletion forces.Comment: 17 pages, 4 Postscript figures, submitted to Physical Review

    Adsorption of mono- and multivalent cat- and anions on DNA molecules

    Get PDF
    Adsorption of monovalent and multivalent cat- and anions on a deoxyribose nucleic acid (DNA) molecule from a salt solution is investigated by computer simulation. The ions are modelled as charged hard spheres, the DNA molecule as a point charge pattern following the double-helical phosphate strands. The geometrical shape of the DNA molecules is modelled on different levels ranging from a simple cylindrical shape to structured models which include the major and minor grooves between the phosphate strands. The densities of the ions adsorbed on the phosphate strands, in the major and in the minor grooves are calculated. First, we find that the adsorption pattern on the DNA surface depends strongly on its geometrical shape: counterions adsorb preferentially along the phosphate strands for a cylindrical model shape, but in the minor groove for a geometrically structured model. Second, we find that an addition of monovalent salt ions results in an increase of the charge density in the minor groove while the total charge density of ions adsorbed in the major groove stays unchanged. The adsorbed ion densities are highly structured along the minor groove while they are almost smeared along the major groove. Furthermore, for a fixed amount of added salt, the major groove cationic charge is independent on the counterion valency. For increasing salt concentration the major groove is neutralized while the total charge adsorbed in the minor groove is constant. DNA overcharging is detected for multivalent salt. Simulations for a larger ion radii, which mimic the effect of the ion hydration, indicate an increased adsorbtion of cations in the major groove.Comment: 34 pages with 14 figure

    Hydration interactions: aqueous solvent effects in electric double layers

    Full text link
    A model for ionic solutions with an attractive short-range pair interaction between the ions is presented. The short-range interaction is accounted for by adding a quadratic non-local term to the Poisson-Boltzmann free energy. The model is used to study solvent effects in a planar electric double layer. The counter-ion density is found to increase near the charged surface, as compared with the Poisson-Boltzmann theory, and to decrease at larger distances. The ion density profile is studied analytically in the case where the ion distribution near the plate is dominated only by counter-ions. Further away from the plate the density distribution can be described using a Poisson-Boltzmann theory with an effective surface charge that is smaller than the actual one.Comment: 11 Figures in 13 files + LaTex file. 20 pages. Accepted to Phys. Rev. E. Corrected typos and reference

    Effective interaction between helical bio-molecules

    Get PDF
    The effective interaction between two parallel strands of helical bio-molecules, such as deoxyribose nucleic acids (DNA), is calculated using computer simulations of the "primitive" model of electrolytes. In particular we study a simple model for B-DNA incorporating explicitly its charge pattern as a double-helix structure. The effective force and the effective torque exerted onto the molecules depend on the central distance and on the relative orientation. The contributions of nonlinear screening by monovalent counterions to these forces and torques are analyzed and calculated for different salt concentrations. As a result, we find that the sign of the force depends sensitively on the relative orientation. For intermolecular distances smaller than 6A˚6\AA it can be both attractive and repulsive. Furthermore we report a nonmonotonic behaviour of the effective force for increasing salt concentration. Both features cannot be described within linear screening theories. For large distances, on the other hand, the results agree with linear screening theories provided the charge of the bio-molecules is suitably renormalized.Comment: 18 pages, 18 figures included in text, 100 bibliog

    Temperature effects on energy production by salinity exchange

    Get PDF
    This is an unedited version of this paper. The publisher version can be reached in this URL: http://pubs.acs.org/doi/abs/10.1021/es500634fIn recent years, the capacitance of the interface between charged electrodes and ionic solutions (the electric double layer) has been investigated as a source of clean energy. Charge is placed on the electrodes either by means of ion-exchange membranes or of an external power source. In the latter method, net energy is produced by simple solution exchange in open circuit, due to the associated decrease in the capacitance of the electric double layer. In this work, we consider the change in capacitance associated with temperature variations: the former decreases when temperature is raised, and, hence, a cycle is possible in which some charge is put on the electrode at a certain potential and returned at a higher one. We demonstrate experimentally that it is thus viable to obtain energy from electric double layers if these are successively contacted with water at different temperatures. In addition, we show theoretically and experimentally that temperature and salinity variations can be conveniently combined to maximize the electrode potential increase. The resulting available energy is also estimated.Departamento de Física AplicadaThe research leading to these results received funding from the European Union 7th Frame-work Programme (FP7/2007-2013) under agreement No. 256868. Further Financial supports from Junta de Andalucía, project FQM 694, and Ministerio de Economía y Competitividad (Spain), project FIS2013-47666-C3-1-R

    Unified Homogenization Theory for Magnetoinductive and Electromagnetic Waves in Split Ring Metamaterials

    Full text link
    A unified homogenization procedure for split ring metamaterials taking into account time and spatial dispersion is introduced. The procedure is based on two coupled systems of equations. The first one comes from an approximation of the metamaterial as a cubic arrangement of coupled LC circuits, giving the relation between currents and local magnetic field. The second equation comes from macroscopic Maxwell equations, and gives the relation between the macroscopic magnetic field and the average magnetization of the metamaterial. It is shown that electromagnetic and magnetoinductive waves propagating in the metamaterial are obtained from this analysis. Therefore, the proposed time and spatially dispersive permeability accounts for the characterization of the complete spectrum of waves of the metamaterial. Finally, it is shown that the proposed theory is in good quantitative and qualitative agreement with full wave simulations.Comment: 4 pages, 3 figure
    corecore