3,982 research outputs found

    Detecting a rotation in the epsilon Eridani debris disc

    Full text link
    The evidence for a rotation of the epsilon Eridani debris disc is examined. Data at 850 micron wavelength were previously obtained using the Submillimetre Common User Bolometer Array (SCUBA) over periods in 1997-1998 and 2000-2002. By chi-square fitting after shift and rotation operations, images from these two epochs were compared to recover proper motion and orbital motion of the disc. The same procedures were then performed on simulated images to estimate the accuracy of the results. Minima in the chi-square plots indicate a motion of the disc of approximately 0.6'' per year in the direction of the star's proper motion. This underestimates the true value of 1'' per year, implying that some of the structure in the disc region is not associated with epsilon Eridani, originating instead from background galaxies. From the chi-square fitting for orbital motion, a counterclockwise rotation rate of ~2.75 degrees per year is deduced. Comparisons with simulated data in which the disc is not rotating show that noise and background galaxies result in approximately Gaussian fluctuations with a standard deviation +/-1.5 degrees per year. Thus counterclockwise rotation of disc features is supported at approximately a 2-sigma level, after a 4-year time difference. This rate is faster than the Keplerian rate of 0.65 degrees per year for features at ~65 AU from the star, suggesting their motion is tracking a planet inside the dust ring. Future observations with SCUBA-2 can rule out no rotation of the epsilon Eridani dust clumps with ~4-sigma confidence. Assuming a rate of about 2.75 degrees per year, the rotation of the features after a 10-year period could be shown to be >1 degree per year at the 3-sigma level.Comment: 8 pages, 6 figure

    The feasibility of sea surface temperature determination using satellite infrared data

    Get PDF
    Sea surface temperature determination feasibility using satellite infrared dat

    Co-located wave and offshore wind farms: A preliminary approach to the shadow effect

    Get PDF
    In recent years, with the consolidation of offshore wind technology and the progress carried out for wave energy technology, the option of combine both technologies has arisen. This combination rest mainly in two main reasons: in one hand, to increase the sustainability of both energies by means of a more rational harnessing of the natural resources; in the other hand, to reduce the costs of both technologies by sharing some of the most important costs of an offshore project. In addition to these two powerful reasons there are a number of technology synergies between wave and wind systems which makes their combination even more suitable. Co-located projects are one of the alternatives to combine wave-wind systems, and it is specially for these project were so-called shadow effect synergy becomes meaningful. In particular, this paper deals with the co-location of Wave Energy Conversion (WEC) technologies into a conventional offshore wind farm. More specifically, an overtopping type of WEC technology was considered in this work to study the effects of its co-location with a conventional offshore wind park. This study aims to give a preliminary approach to the shadow effect and its implications for both wave and offshore wind energies

    Study of random process theory Final report, 1 Jul. 1965 - 1 Apr. 1966

    Get PDF
    Random process theory applied to discrete stationary and nonstationary data processing techniques - autocorrelation, and optimum smoothing for stationary processe

    CO-LOCATED WAVE AND OFFSHORE WIND FARMS: A PRELIMINARY CASE STUDY OF AN HYBRID ARRAY

    Get PDF
    In recent years, with the consolidation of offshore wind technology and the progress carried out for wave energy technology, the option of co-locate both technologies at the same marine area has arisen. Co-located projects are a combined solution to tackle the shared challenge of reducing technology costs or a more sustainable use of the natural resources. In particular, this paper deals with the co-location of Wave Energy Conversion (WEC) technologies into a conventional offshore wind farm. More specifically, an overtopping type of WEC technology was considered in this work to study the effects of its co-location with a conventional offshore wind park

    Predicting the frequencies of diverse exo-planetary systems

    Full text link
    Extrasolar planetary systems range from hot Jupiters out to icy comet belts more distant than Pluto. We explain this diversity in a model where the mass of solids in the primordial circumstellar disk dictates the outcome. The star retains measures of the initial heavy-element (metal) abundance that can be used to map solid masses onto outcomes, and the frequencies of all classes are correctly predicted. The differing dependences on metallicity for forming massive planets and low-mass cometary bodies are also explained. By extrapolation, around two-thirds of stars have enough solids to form Earth-like planets, and a high rate is supported by the first detections of low-mass exo-planets.Comment: 5 pages, 2 figures; accepted by MNRA

    ALMA and Herschel Observations of the Prototype Dusty and Polluted White Dwarf G29-38

    Get PDF
    ALMA Cycle 0 and Herschel PACS observations are reported for the prototype, nearest, and brightest example of a dusty and polluted white dwarf, G29-38. These long wavelength programs attempted to detect an outlying, parent population of bodies at 1-100 AU, from which originates the disrupted planetesimal debris that is observed within 0.01 AU and which exhibits L_IR/L = 0.039. No associated emission sources were detected in any of the data down to L_IR/L ~ 1e-4, generally ruling out cold dust masses greater than 1e24 - 1e25 g for reasonable grain sizes and properties in orbital regions corresponding to evolved versions of both asteroid and Kuiper belt analogs. Overall, these null detections are consistent with models of long-term collisional evolution in planetesimal disks, and the source regions for the disrupted parent bodies at stars like G29-38 may only be salient in exceptional circumstances, such as a recent instability. A larger sample of polluted white dwarfs, targeted with the full ALMA array, has the potential to unambiguously identify the parent source(s) of their planetary debris.Comment: 8 pages, 5 figures and 1 table. Accepted to MNRA

    Transience of hot dust around sun-like stars

    Get PDF
    There is currently debate over whether the dust content of planetary systems is stochastically regenerated or originates in planetesimal belts evolving in steady state. In this paper a simple model for the steady state evolution of debris disks due to collisions is developed and confronted with the properties of the emerging population of 7 sun-like stars that have hot dust <10AU. The model shows there is a maximum possible disk mass at a given age, since more massive primordial disks process their mass faster. The corresponding maximum dust luminosity is f_max=0.00016r^(7/3)/t_age. The majority (4/7) of the hot disks exceed this limit by >1000 and so cannot be the products of massive asteroid belts, rather the following systems must be undergoing transient events characterized by an unusually high dust content near the star: eta Corvi, HD69830, HD72905 and BD+20307. It is also shown that the hot dust cannot originate in a recent collision in an asteroid belt, since there is also a maximum rate at which collisions of sufficient magnitude to reproduce a given dust luminosity can occur. Further it is shown that the planetesimal belt feeding the dust in these systems must be located further from the star than the dust, typically at >2AU. Other notable properties of the 4 hot dust systems are: two also have a planetesimal belt at >10AU (eta Corvi and HD72905); one has 3 Neptune mass planets at <1AU (HD69830); all exhibit strong silicate features in the mid-IR. We consider the most likely origin for the dust in these systems to be a dynamical instability which scattered planetesimals inwards from a more distant planetesimal belt in an event akin to the Late Heavy Bombardment in our own system, the dust being released from such planetesimals in collisions and possibly also sublimation.Comment: 16 pages, accepted by ApJ, removed HD128400 as hot dust candidat
    corecore