3,729 research outputs found
Development of four-dimensional atmospheric models (worldwide)
Development of four dimensional atmospheric models from global data for predicting atmospheric attenuation encountered by earth resources observation sensor
Development of a global cloud model for simulating earth viewing space missions
Global cloud model for computerized simulation of earth-viewing space mission
Triple trouble for XZ Tau : deep imaging with the Jansky Very Large Array
DF gratefully acknowledges support from STFC grant ST/J001422/1. RJI acknowledges support in the form of ERC Advanced Investigator programme, cosmicism. EI acknowledges funding from CONICYT/FONDECYT postdoctoral project no.: 3130504.We present new observations of the XZ Tau system made at high angular resolution (55 mas) with the Karl G. Jansky Very Large Array (VLA) at a wavelength of 7 mm. Observations of XZ Tau made with the VLA in 2004 appeared to show a triple-star system, with XZ Tau A resolved into two sources, XZ Tau A and XZ Tau C. The angular separation of XZ Tau A and C (0.09 arcsec) suggested a projected orbital separation of around 13 au with a possible orbital period of around 40 yr. Our follow-up observations were obtained approximately 8 yr later, a fifth of this putative orbital period, and should therefore allow us to constrain the orbital parameters of XZ Tau C, and evaluate the possibility that a recent periastron passage of C coincided with the launch of extended optical outflows from XZ Tau A. Despite improved sensitivity and resolution, as compared with the 2004 observations, we find no evidence of XZ Tau C in our data. Components A and B are detected with a signal-to-noise ratio greater than 10; their orbital motions are consistent with previous studies of the system, although the emission from XZ Tau A appears to be weaker. Three possible interpretations are offered: either XZ Tau C is transiting XZ Tau A, which is broadly consistent with the periastron passage hypothesis, or the emission seen in 2004 was that of a transient, or XZ Tau C does not exist. A fourth interpretation, that XZ Tau C was ejected from the system, is dismissed due to the lack of angular momentum redistribution in the orbits of XZ Tau A and XZ Tau B that would result from such an event. Transients are rare but cannot be ruled out in a T Tauri system known to exhibit variable behaviour. Our observations are insufficient to distinguish between the remaining possibilities, at least not until we obtain further VLA observations at a sufficiently later time. A further non-detection would allow us to reject the transit hypothesis, and the periastron passage of XZ Tau C as agent of XZ Tau A's outflows.Publisher PDFPeer reviewe
Coplanar Circumbinary Debris Disks
We present resolved Herschel images of circumbinary debris disks in the alpha
CrB (HD139006) and beta Tri (HD13161) systems. We find that both disks are
consistent with being aligned with the binary orbital planes. Though secular
perturbations from the binary can align the disk, in both cases the alignment
time at the distances at which the disk is resolved is greater than the stellar
age, so we conclude that the coplanarity was primordial. Neither disk can be
modelled as a narrow ring, requiring extended radial distributions. To satisfy
both the Herschel and mid-IR images of the alpha CrB disk, we construct a model
that extends from 1-300AU, whose radial profile is broadly consistent with a
picture where planetesimal collisions are excited by secular perturbations from
the binary. However, this model is also consistent with stirring by other
mechanisms, such as the formation of Pluto-sized objects. The beta Tri disk
model extends from 50-400AU. A model with depleted (rather than empty) inner
regions also reproduces the observations and is consistent with binary and
other stirring mechanisms. As part of the modelling process, we find that the
Herschel PACS beam varies by as much as 10% at 70um and a few % at 100um. The
70um variation can therefore hinder image interpretation, particularly for
poorly resolved objects. The number of systems in which circumbinary debris
disk orientations have been compared with the binary plane is now four. More
systems are needed, but a picture in which disks around very close binaries
(alpha CrB, beta Tri, and HD 98800, with periods of a few weeks to a year) are
aligned, and disks around wider binaries (99 Her, with a 50 yr period) are
misaligned, may be emerging. This picture is qualitatively consistent with the
expectation that the protoplanetary disks from which the debris emerged are
more likely to be aligned if their binaries have shorter periods.Comment: accepted to MNRA
Mechanisms for stabilisation and the maintenance of solubility in proteins from thermophiles
BACKGROUND: The database of protein structures contains representatives from organisms with a range of growth temperatures. Various properties have been studied in a search for the molecular basis of protein adaptation to higher growth temperature. Charged groups have emerged as key distinguishing factors for proteins from thermophiles and mesophiles. RESULTS: A dataset of 291 thermophile-derived protein structures is compared with mesophile proteins. Calculations of electrostatic interactions support the importance of charges, but indicate that increases in charge contribution to folded state stabilisation do not generally correlate with the numbers of charged groups. Relative propensities of charged groups vary, such as the substitution of glutamic for aspartic acid sidechains. Calculations suggest an energetic basis, with less dehydration for longer sidechains. Most other properties studied show weak or insignificant separation of proteins from moderate thermophiles or hyperthermophiles and mesophiles, including an estimate of the difference in sidechain rotameric entropy upon protein folding. An exception is increased burial of alanine and proline residues and decreased burial of phenylalanine, methionine, tyrosine and tryptophan in hyperthermophile proteins compared to those from mesophiles. CONCLUSION: Since an increase in the number of charged groups for hyperthermophile proteins is separable from charged group contribution to folded state stability, we hypothesise that charged group propensity is important in the context of protein solubility and the prevention of aggregation. Accordingly we find some separation between mesophile and hyperthermophile proteins when looking at the largest surface patch that does not contain a charged sidechain. With regard to our observation that aromatic sidechains are less buried in hyperthermophile proteins, further analysis indicates that the placement of some of these groups may facilitate the reduction of folding fluctuations in proteins of the higher growth temperature organisms
Speeding in urban environments: Are the time savings worth the risk?
Perceived time savings by travelling faster is often cited as a motivation for drivers’ speeding behaviour. These time savings, however, come at a cost of significant road injuries and fatalities. While it is known that drivers tend to overestimate the time savings attributable to speeding there is little empirical evidence on how much time drivers genuinely save during day-to-day urban driving and how this relates to speeding-related crashes. The current paper reports on a study to address the lack of empirical evidence on this issue using naturalistic driving data collected from 106 drivers over a period of five weeks. The results show that the average driver saves 26 seconds per day or two minutes per week by speeding. More importantly, the cost of these time savings is one fatality for every 18,947 hours saved by the population on 100 km/h roads and one injury for every 1,407 hours saved on the same roads. Full speed compliance – and consequently a dramatic reduction in the road toll – could be achieved through almost imperceptible increases in travel time by each driver
Travel time competitiveness of cycling in Sydney
A key issue for both sustainable transport and public health is the viability of cycling as a genuine alternative to the car, particularly for short trips. This paper considers this issue by assessing hypothetically the travel time implications of substituting actual car trips with cycling. The car trips are captured over several weeks for 178 Sydney motorists using GPS technology, while the cycling trips are generated using reverse geocoding processes in GIS software, taking into account the impacts of terrain in particular on cycling travel times. Both individual trips and more importantly trip chains are considered. Assuming an ‘inexperienced adult’ cyclist, results suggest that over 90 percent of car trips up to five kilometres in length (which comprise 58 percent of trips), could be cycled within 10 minutes of the time taken by car, a similar finding to results reported elsewhere. As the level of cycling experience increases, the ‘bikeable’ distance increases with the majority of ‘commuter adults’ being able to cycle the median commuting distance in Sydney of 11 kilometres with little additional travel time compared to a car. When considering trip chains, while the competitiveness of cycling goes down as more legs are included, the total distance of the chain emerges as a more crucial issue with cycling being equally competitive for trip chains shorter than 10 kilometres as for individual trips shorter than 10 kilometres. Finally, when considered in the context of daily travel time budgets, the analysis suggests around 20 percent of people could switch totally from cars to bicycles without incurring more than a 20 minute additional increase in travel time on average per day
ALMA and Herschel Observations of the Prototype Dusty and Polluted White Dwarf G29-38
ALMA Cycle 0 and Herschel PACS observations are reported for the prototype,
nearest, and brightest example of a dusty and polluted white dwarf, G29-38.
These long wavelength programs attempted to detect an outlying, parent
population of bodies at 1-100 AU, from which originates the disrupted
planetesimal debris that is observed within 0.01 AU and which exhibits L_IR/L =
0.039. No associated emission sources were detected in any of the data down to
L_IR/L ~ 1e-4, generally ruling out cold dust masses greater than 1e24 - 1e25 g
for reasonable grain sizes and properties in orbital regions corresponding to
evolved versions of both asteroid and Kuiper belt analogs. Overall, these null
detections are consistent with models of long-term collisional evolution in
planetesimal disks, and the source regions for the disrupted parent bodies at
stars like G29-38 may only be salient in exceptional circumstances, such as a
recent instability. A larger sample of polluted white dwarfs, targeted with the
full ALMA array, has the potential to unambiguously identify the parent
source(s) of their planetary debris.Comment: 8 pages, 5 figures and 1 table. Accepted to MNRA
Discovery of the Fomalhaut C debris disc
Fomalhaut is one of the most interesting and well studied nearby stars,
hosting at least one planet, a spectacular debris ring, and two distant
low-mass stellar companions (TW PsA and LP 876-10, a.k.a. Fomalhaut B & C). We
observed both companions with Herschel, and while no disc was detected around
the secondary, TW PsA, we have discovered the second debris disc in the
Fomalhaut system, around LP 876-10. This detection is only the second case of
two debris discs seen in a multiple system, both of which are relatively wide
(3000 AU for HD 223352/40 and 158 kAU [0.77 pc] for Fomalhaut/LP
876-10). The disc is cool (24K) and relatively bright, with a fractional
luminosity , and represents the rare
observation of a debris disc around an M dwarf. Further work should attempt to
find if the presence of two discs in the Fomalhaut system is coincidental,
perhaps simply due to the relatively young system age of 440 Myr, or if the
stellar components have dynamically interacted and the system is even more
complex than it currently appears.Comment: Published in MNRAS Letters. Merry Xma
- …