80 research outputs found

    Increase of the Lutein Content in Hens' Eggs

    Get PDF
    Lutein is a plant pigment that belongs to the xantophyll group of carotenoids. In nature it is widespread (prevalent) in green leafy vegetables (spinach, kale, collard greens, lettuce) but also in peppers, tangerines, corn and egg yolk. Since it cannot be synthesized in the body it has to be taken with food. In human body lutein is concentrated in the retina and macula lutea and its content in those tissues rises with increased intake through food or supplements. It has antioxidant activity, protects eyes from high-energy blue light and helps in reducing the risk of developing age-related macular degeneration and cataracts. Until now, lutein was used in poultry industry mostly for pigmenting broiler's meat and skin and egg yolk and lately there have been more studies whose goal is to increase lutein content in yolk and production of enriched, functional food. Although table egg is not the best source of lutein, studies have shown that its bioavailability in human body is higher from lipid matrix of yolk compared with lutein from vegetable sources or food supplements. The egg is highly nutritious food because it contains high-quality proteins with balanced amino acid composition, essential fatty acids, minerals and vitamins necessary for proper functioning of the body and with increased content of lutein it becomes a value-added product. Addition of natural or synthetic sources of lutein in mixtures for laying hens enables the transfer of lutein through hen's metabolism into egg yolk. The increase of lutein content in yolk is noticeable already after one week of feeding the hens with modified mixtures although it takes a longer time for its content to be stabilized. Egg with increased content of lutein in yolk represents quality and accessible source of lutein in human nutrition. Consumption of enriched eggs contributes to increased intake of lutein as well as its accumulation in the human organism

    Effect of Vitamin E, Lutein, Selenium and Oil Mixture Added to Feed and Cooking Length on Yolk Color and Egg Quality

    Get PDF
    The aim of this research was to determine the quality of eggs laid by Tetra SL hens fed standard diet (B) or diet supplemented with 100 mg vitamin E/kg+200 mg/kg lutein+0.5 mg/kg selenium+5% oil mixture (BK). The effect of treatment was determined for yolk color values (P0.05). However, the treatment had statistically significant effect (P0.05)

    Expression of osteoprotegerin and its ligands, RANKL and TRAIL, in rheumatoid arthritis

    Get PDF
    Osteoprotegerin (OPG), receptor activator of nuclear factor-?B ligand (RANKL) and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) have been involved in rheumatoid arthritis (RA) pathophysiology. In this study, we assessed messenger RNA (mRNA) expression of these molecules by qPCR in peripheral blood from 26 patients with RA (12 of them with ischemic heart disease -IHD) and 10 healthy controls. Correlation coefficients between OPG, RANKL and TRAIL expression levels in RA patients and their clinical and demographic characteristics were also evaluated. Whereas OPG and OPG/TRAIL ratio expression were significantly increased in RA patients compared to controls (fold change?=?1.79, p?=?0.013 and 2.07, p?=?0.030, respectively), RANKL/OPG ratio was significantly decreased (fold change?=?0.50, p?=?0.020). No significant differences were found between patients and controls in RANKL and TRAIL expression. Interestingly, TRAIL expression was significantly higher in RA patients with IHD compared to those without IHD (fold change?=?1.46, p?=?0.033). Moreover, biologic disease-modifying antirheumatic drugs (DMARDs) significantly decreased RANKL expression in RA patients (p?=?0.016). Our study supports an important role of OPG and TRAIL in RA. Furthermore, it highlights an effect of biologic DMARDs in the modulation of RANKL

    Effects of CreERT2, 4-OH Tamoxifen, and Gender on CFU-F Assays

    Get PDF
    Gene function in stem cell maintenance is often tested by inducing deletion via the Cre-loxP system. However, controls for Cre and other variables are frequently not included. Here we show that when cultured in the presence of 4-OH tamoxifen, bone and marrow cells containing the CreERT2 construct have a reduced colony forming ability. Inactive CreERT2 recombinase, however, has the opposite effect. Young female marrow cells containing the inactive CreERT2 construct grew more colonies than cells lacking the construct altogether. Young female control marrow cells (i.e., negative for CreERT2) also produced significantly greater colony numbers when cultured with 4-OH tamoxifen, compared with the ethanol vehicle control. In conclusion, we report that the use of the Cre-loxP system is inadvisable in combination with CFU-F assays, and that appropriate controls should be in place to extend the future use of Cre-loxP in alternate assays

    Bone morphogenetic protein-2 gene controls tooth root development in coordination with formation of the periodontium

    Get PDF
    Formation of the periodontium begins following onset of tooth-root formation in a coordinated manner after birth. Dental follicle progenitor cells are thought to form the cementum, alveolar bone and Sharpey's fibers of the periodontal ligament (PDL). However, little is known about the regulatory morphogens that control differentiation and function of these progenitor cells, as well as the progenitor cells involved in crown and root formation. We investigated the role of bone morphogenetic protein-2 (Bmp2) in these processes by the conditional removal of the Bmp2 gene using the Sp7-Cre-EGFP mouse model. Sp7-Cre-EGFP first becomes active at E18 in the first molar, with robust Cre activity at postnatal day 0 (P0), followed by Cre activity in the second molar, which occurs after P0. There is robust Cre activity in the periodontium and third molars by 2 weeks of age. When the Bmp2 gene is removed from Sp7(+) (Osterix(+)) cells, major defects are noted in root, cellular cementum and periodontium formation. First, there are major cell autonomous defects in root-odontoblast terminal differentiation. Second, there are major alterations in formation of the PDLs and cellular cementum, correlated with decreased nuclear factor IC (Nfic), periostin and α-SMA(+) cells. Third, there is a failure to produce vascular endothelial growth factor A (VEGF-A) in the periodontium and the pulp leading to decreased formation of the microvascular and associated candidate stem cells in the Bmp2-cKO(Sp7-Cre-EGFP). Fourth, ameloblast function and enamel formation are indirectly altered in the Bmp2-cKO(Sp7-Cre-EGFP). These data demonstrate that the Bmp2 gene has complex roles in postnatal tooth development and periodontium formation

    Fas receptor is required for estrogen deficiency-induced bone loss in mice

    Get PDF
    Bone mass is determined by bone cell differentiation, activity, and death, which mainly occur through apoptosis. Apoptosis can be triggered by death receptor Fas (CD95), expressed on osteoblasts and osteoclasts and may be regulated by estrogen. We have previously shown that signaling through Fas inhibits osteoblast differentiation. In this study we analyzed Fas as a possible mediator of bone loss induced by estrogen withdrawal. At 4 weeks after ovariectomy (OVX), Fas gene expression was greater in osteoblasts and lower in osteoclasts in ovariectomized C57BL/6J (wild type (wt)) mice compared with sham-operated animals. OVX was unable to induce bone loss in mice with a gene knockout for Fas (Fas -/- mice). The number of osteoclasts increased in wt mice after OVX, whereas it remained unchanged in Fas -/- mice. OVX induced greater stimulation of osteoblastogenesis in Fas -/- than in wt mice, with higher expression of osteoblast-specific genes. Direct effects on bone cell differentiation and apoptosis in vivo were confirmed in vitro, in which addition of estradiol decreased Fas expression and partially abrogated the apoptotic and differentiation-inhibitory effect of Fas in osteoblast lineage cells, while having no effect on Fas-induced apoptosis in osteoclast lineage cells. In conclusion, the Fas receptor has an important role in the pathogenesis of postmenopausal osteoporosis by mediating apoptosis and inhibiting differentiation of osteoblast lineage cells. Modulation of Fas effects on bone cells may be used as a therapeutic target in the treatment of osteoresorptive disorders

    Syringobulbia

    No full text
    • …
    corecore