29 research outputs found

    Learning to Generate Facial Depth Maps

    Get PDF
    In this paper, an adversarial architecture for facial depth map estimation from monocular intensity images is presented. By following an image-to-image approach, we combine the advantages of supervised learning and adversarial training, proposing a conditional Generative Adversarial Network that effectively learns to translate intensity face images into the corresponding depth maps. Two public datasets, namely Biwi database and Pandora dataset, are exploited to demonstrate that the proposed model generates high-quality synthetic depth images, both in terms of visual appearance and informative content. Furthermore, we show that the model is capable of predicting distinctive facial details by testing the generated depth maps through a deep model trained on authentic depth maps for the face verification task

    Disentangled Wasserstein Autoencoder for T-Cell Receptor Engineering

    Full text link
    In protein biophysics, the separation between the functionally important residues (forming the active site or binding surface) and those that create the overall structure (the fold) is a well-established and fundamental concept. Identifying and modifying those functional sites is critical for protein engineering but computationally non-trivial, and requires significant domain knowledge. To automate this process from a data-driven perspective, we propose a disentangled Wasserstein autoencoder with an auxiliary classifier, which isolates the function-related patterns from the rest with theoretical guarantees. This enables one-pass protein sequence editing and improves the understanding of the resulting sequences and editing actions involved. To demonstrate its effectiveness, we apply it to T-cell receptors (TCRs), a well-studied structure-function case. We show that our method can be used to alter the function of TCRs without changing the structural backbone, outperforming several competing methods in generation quality and efficiency, and requiring only 10% of the running time needed by baseline models. To our knowledge, this is the first approach that utilizes disentangled representations for TCR engineering

    Are you a robot? Detecting Autonomous Vehicles from Behavior Analysis

    Full text link
    The tremendous hype around autonomous driving is eagerly calling for emerging and novel technologies to support advanced mobility use cases. As car manufactures keep developing SAE level 3+ systems to improve the safety and comfort of passengers, traffic authorities need to establish new procedures to manage the transition from human-driven to fully-autonomous vehicles while providing a feedback-loop mechanism to fine-tune envisioned autonomous systems. Thus, a way to automatically profile autonomous vehicles and differentiate those from human-driven ones is a must. In this paper, we present a fully-fledged framework that monitors active vehicles using camera images and state information in order to determine whether vehicles are autonomous, without requiring any active notification from the vehicles themselves. Essentially, it builds on the cooperation among vehicles, which share their data acquired on the road feeding a machine learning model to identify autonomous cars. We extensively tested our solution and created the NexusStreet dataset, by means of the CARLA simulator, employing an autonomous driving control agent and a steering wheel maneuvered by licensed drivers. Experiments show it is possible to discriminate the two behaviors by analyzing video clips with an accuracy of 80%, which improves up to 93% when the target state information is available. Lastly, we deliberately degraded the state to observe how the framework performs under non-ideal data collection conditions

    On TCR binding predictors failing to generalize to unseen peptides

    Get PDF
    Several recent studies investigate TCR-peptide/-pMHC binding prediction using machine learning or deep learning approaches. Many of these methods achieve impressive results on test sets, which include peptide sequences that are also included in the training set. In this work, we investigate how state-of-the-art deep learning models for TCR-peptide/-pMHC binding prediction generalize to unseen peptides. We create a dataset including positive samples from IEDB, VDJdb, McPAS-TCR, and the MIRA set, as well as negative samples from both randomization and 10X Genomics assays. We name this collection of samples TChard. We propose the hard split, a simple heuristic for training/test split, which ensures that test samples exclusively present peptides that do not belong to the training set. We investigate the effect of different training/test splitting techniques on the models’ test performance, as well as the effect of training and testing the models using mismatched negative samples generated randomly, in addition to the negative samples derived from assays. Our results show that modern deep learning methods fail to generalize to unseen peptides. We provide an explanation why this happens and verify our hypothesis on the TChard dataset. We then conclude that robust prediction of TCR recognition is still far for being solved

    Adrenocortical Carcinoma and CT Assessment of Therapy Response: The Value of Combining Multiple Criteria

    Get PDF
    We evaluated tumor response at Computed Tomography (CT) according to three radiologic criteria: RECIST 1.1, CHOI and tumor volume in 34 patients with metastatic adrenocortical carcinoma (ACC) submitted to standard chemotherapy. These three criteria agreed in defining partial response, stable or progressive disease in 24 patients (70.5%). Partial response (PR) was observed in 29.4%, 29.4% and 41.2% of patients according to RECIST 1.1, CHOI and tumor volume, respectively. It was associated with a favorable prognosis, regardless of the criterion adopted. The concordance of all the 3 criteria in defining the disease response identified 8 patients (23.5%) which displayed a very good prognosis: median progression free survival (PFS) and overall survival (OS) 14.9 and 37.7 months, respectively. Seven patients (20.6%) with PR assessed by one or two criteria, however, still had a better prognosis than non-responding patients, both in terms of PFS: median 12.3 versus 9.9 months and OS: 21 versus 12.2, respectively. In conclusions, the CT assessment of disease response of ACC patients to chemotherapy with 3 different criteria is feasible and allows the identification of a patient subset with a more favorable outcome. PR with at least one criterion can be useful to early identify patients that deserve continuing the therapy

    Phylogeography and genomic epidemiology of SARS-CoV-2 in Italy and Europe with newly characterized Italian genomes between February-June 2020

    Get PDF

    Prognostic factors associated with mortality risk and disease progression in 639 critically ill patients with COVID-19 in Europe: Initial report of the international RISC-19-ICU prospective observational cohort

    Get PDF

    Face Verification from Depth using Privileged Information

    No full text
    In this paper, a deep Siamese architecture for depth-based face verification is presented. The proposed approach efficiently verifies if two face images belong to the same person while handling a great variety of head poses and occlusions. The architecture, namely JanusNet, consists in a combination of a depth, a RGB and a hybrid Siamese network. During the training phase, the hybrid network learns to extract complementary mid-level convolutional features which mimic the features of the RGB network, simultaneously leveraging on the light invariance of depth images. At testing time, the model, relying only on depth data, achieves state-of-art results and real time performance, despite the lack of deep-oriented depth-based datasets
    corecore