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Abstract

The purpose of this study was to verify in healthy liver parenchyma the possible influence of age on DwI-related parameters: apparent
diffusion coefficient (ADC), perfusion fraction (PF), diffusion and pseudodiffusion coefficient (D and D⁎). Forty healthy adult volunteers
(age range 26–86 years), divided into four age groups, were prospectively submitted to a breath-hold magnetic resonance diffusion imaging
(MR-DwI) (two b values, 0–300 and 0–1000 s/mm2). A smaller cohort of 16 subjects underwent a free-breath multi-b acquisition (16 b
values, 0–750 s/mm2). Quantitative analysis was performed by two observers with manually defined regions of interest, on the most
homogeneous portion of the right liver lobe. Individual and group statistical analysis of data was performed: ANOVA to establish differences
between groups and Pearson correlation coefficient to investigate the association between DwI parameters and age. The mean, S.D. and 95%
limits of agreement of ADC values for each age-defined group are reported. ANOVA showed no significant differences between group
means (P always N.05). No significant correlation between subjects' age and DwI parameters was established, both in breath-hold and free-
breath acquisitions, on the whole range of adopted b values. Our study conducted on healthy liver parenchyma shows that there are no
significant differences in ADC, PF, D and D⁎ of younger or older subjects.
© 2011 Elsevier Inc. All rights reserved.
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1. Introduction

Measurement of the apparent diffusion coefficient (ADC)
by means of diffusion-weighted magnetic resonance imag-
ing (MR-DwI) allows quantification of the combined effects
of molecular Brownian motion of water within tissues and
perfusion [1,2]. MR-DwI has become a tool for intensive
clinical research which can quantitatively differentiate benign
from malignant focal hepatic lesions or stage hepatic fibrosis
[3–8]. However, the quantitative results in this field are still
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controversial due to several technical and physiological
factors that concurrently affect ADC measurements such as
b factor, echo time (TE), site and size of sampling methods,
temperature, nondiffusional intravoxel incoherent motion
(IVIM) related to perfusion, modality of acquisition (breath-
hold BH, free-breath FB, echo-navigator), without consider-
ing difficulties related to intrinsic sensitivity to motion and
magnetic susceptibility of Dw sequences [2,9–20].

Another physiological effect which has never been inves-
tigated, as far as we know, that could determine ADC varia-
tion in the liver is the subject's age, whose influence on
quantitative DwI is still unknown [6,7].

With this background, the aim of our study was to ana-
lyze the possible influence of age on DwI main quantitative
parameters, which are ADC, perfusion fraction (PF), diffusion
(D) and pseudodiffusion (D⁎).
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2. Methods

2.1. Study participants

Forty healthy adult volunteers prospectively underwent
abdominal MR-DwI from November 2009 to October 2010
(27 males, 13 females, ranging in age from 26 to 86 years,
mean age 48 years). Subjects were selected to homoge-
neously cover the whole age range and were divided into
four groups of 10 subjects each in the following age ranges:
18–30, 31–45, 46–65, N65 years, respectively, identified as
Groups A, B, C, and D.

The inclusion criteria for this study were as follows: no
history of illegal drug use or alcohol abuse, normal liver on
ultrasound study (no focal or diffuse liver disease, including
mild steatosis) [21], normal liver function tests and no his-
tory of abdominal surgery. The study protocol was approved
by the investigation and ethics committee of our institution.
The aim and nature of this prospective study were explained
to the volunteers, each of whom provided written consent
before beginning the examination, in accordance with the
principles of the Declaration of Helsinki (revision of
Edinburgh, 2000). All examinations were performed after
overnight fasting.

2.2. In vitro MR imaging

All examinations were carried out using a 1.5-T MR body
scanner (Gyroscan NT Intera Release 12, Philips, Eindho-
ven, The Netherlands; maximum gradient strength 30 mT/m,
peak slew rate 120 mT/m/ms) equipped with a four-channel
receiver coil, positioned to cover the upper abdomen of the
subject lying in a supine position; the arms were extended
over the head to reduce artefacts. As recommended [19], we
checked the accuracy of our scanner by doing an MR-DwI
phantom study [20], applying two different DwI multi-b
acquisition sequences: the first with the sensitizing factor
varied within a short range of b values (b=0–200 s/mm2 with
steps of 20 s/mm2). This sequence enabled us to assess the
gradient accuracy and the errors induced on the effective b
value by the imaging gradients. The second sequence applied
differed by a greater b value interval (b=0–1000 s/mm2 with
steps of 100 s/mm2), and provided information on reprodu-
cibility and signal stability [20].

2.3. In vivo MR imaging

In vivo, we applied the following protocol of acquisitions
on all the 40 subjects:

Axial and coronal T2-weighted half-Fourier single-shot
turbo spin-echo (HASTE) free-breath sequence, TR/
TE=810/80 ms, echo-train length=69, slice thickness/
number=5 mm/40, intersection slice gap=10%, field of
view (FOV)=300–420 mm, reconstruction matrix
size=256×165, number signal averages (NSA)=1, acquisi-
tion time=2–3 min;
Axial T1-weighted 2D gradient echo in/out phase breath-
hold sequence, TR/TE=231–121/14.6–2.3 ms, slice
thickness/number=5 mm/ 24, intersection slice
gap=10%, flip angle=80, sense factor 1.5, FOV=300–
420 mm, reconstruction matrix size=256×165, NSA=1,
acquisition time=18 s;

Axial D-weighted echo planar (EPI) spin echo; single-
shot, breath-hold sequence; b value 0–300 s/mm2 and 0–
1000 s/mm2; TR/TE=1343/42 ms and 1867/67 ms for b
value 0–300 s/mm2 and 0–1000 s/mm2, respectively; EPI
factor=39; slice thickness/number=9 mm/12; intersec-
tion slice gap=1 mm; flip angle=90°; sense factor 2;
FOV=300–420 mm; NSA=2; half scan factor 62%;
bandwidth 1976–1493 Hz for b value 0–300 and 0–
1000 s/mm2, respectively; RFOV 70%; phase scan
percentage 73%; acquisition voxel (mm3) 3.32/4.55/
9.00; reconstructed voxel (mm3) 1.33/1.33/9.00; acquisi-
tion matrix 128×64; reconstruction matrix 320×220;
acquisition time=17 and 22 s for b value 0–300 and 0–
1000 s/mm2, respectively; fat suppression obtained by
spectral presaturation inversion recovery. Considering the
already demonstrated liver isotropy [8], only one
diffusion gradient direction was applied in every
acquisition in order to reduce the minimum available
TE and consequently the unwanted T2 weighting of the
Dw sequence. The orientation of the diffusion gradient is
defined by the option “gradient overplus” (Philips
Medical System) and the corresponding ADC maps
were calculated (b=0–300 s/mm2, b=0–1000 s/mm2).

Moreover, a smaller cohort of 16 subjects out of 40 were
submitted to a supplemental FB, multi-b, DwI acquisitions
(16 b value, range 0–750 s/mm2, with steps of 50 s/mm2),
with a total duration of 8 min and 27 s:

Axial D-weighted EPI spin echo, single-shot, TR/
TE=1800/61 ms, EPI factor=39, slice thickness/number=9
mm/20, intersection gap=1 mm, flip angle=90°, sense
factor 2, FOV=300–420 mm, NSA=3, half scan factor
62%, bandwidth 1976–1493 Hz, RFOV 70%, phase scan
percentage 73%, acquisition voxel (mm3) 3.32/4.55/9.00,
reconstructed voxel (mm3) 1.33/1.33/9.00, acquisition
matrix 128×64, reconstruction matrix 320×220.

2.4. DwI quantitative analysis

We analyzed the middle-lower portion of the right liver
lobe, where ADC values were recently demonstrated to be
more repeatable and reproducible [20]. Quantitative analysis
of ADC was performed with manually defined regions of
interest (ROIs) (about 1250 pixels per slice for a total of 5000
pixels). We took care to include in each slice the most
homogeneous portion of the middle-lower portion of the
right lobe in each slice, and ROIs were placed on 4 out of 12
slices acquired, excluding four slices from the most cranial
and four others from the most caudal portion of the entire
liver parenchyma acquired. Furthermore, the observers took
care to exclude large vessels from the ROIs (Fig. 1).



Fig. 1. ADC sampling method. (A) Four out of 12 slices acquired (broken and continuous lines) were analyzed (continuous lines) with manually defined ROIs
(about 1250 pixels per slice for a total of 5000 pixels). (B) ROI sampling method: we took care to include the most homogeneous portion of the middle-lowe
portion of the right lobe in each slice analyzed.

Table 1
ADC values by age group

Group b=300 s/mm2 b=1000 s/mm2

Mean S.D. 95% CI Mean S.D. 95% CI

A 2747 567 2419–3074 1650 192 1539–1761
B 2686 472 2291–3081 1483 99 1400–1565
C 2783 650 2195–3282 1555 184 1396–1714
D 2742 800 2211–3356 1558 222 1496–1620

ADC mean, S.D. and 95% confidence interval (CI) for each group both a
b=300 and 1000 s/mm2 (data in 10−6 mm2/s).
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Dw images were evaluated in consensus by a radiologist
and a physicist (both with 4 years of experience in DwI) and
then reevaluated by the study coordinator (with 12 years of
experience in DwI). When the reviewers and the coordi-
nator expressed discordant opinions about an ADC value or
every other estimated parameter (N10% difference), they
reached a consensus through a joint review of the images
with a supplemental ADC measurement.

ADC maps calculated on BH and in vitro DwI acquisitions
(b=300 and 1000 s/mm2) were sampled using MRIcro
software (1.39/5, Chris Rorden's MRIcro 1999–2005, Uni-
versity of South Carolina, Columbia, USA). ADC maps cal-
culated on FB DwI acquisitions (b=50, 100, 150, 300 s/mm2

of the multi-b acquisition) were sampled using Image J [22].
For both BH and FB acquisitions, minimum, maximum,
mean ADC values, and pixel number were recorded by the
two observers. Data are given for individuals and groups.
ROI's data of multi-bDw images were processed through the
well-known two-compartment model of IVIM [1], based on
the following equation:

Sb
S0

= 1 − PFð Þexp −bDð Þ + PFexp −bD4ð Þ ð1Þ

where PF represents the voxel fraction of water diffusing and
flowing in the random oriented capillary network, 1−PF the
fraction of extravascular water random walk, D the diffusion
coefficient and finally D⁎ the pseudodiffusion coefficient,
related to the mean capillary segment length and to the
average blood velocity. PF, D and D⁎ were obtained by
fitting data through Eq. (1).

Since a simultaneous fit of all these parameters could be
difficult, given the high dispersion and the limited sampling
of DwI signals at low b value (bb150 s/mm2) [23,24], a two-
step fitting procedure was adopted, as described in other
papers [25,26].

Briefly, PF and D where estimated from signal inten-
sity data with strong diffusion weighting (b≥200 s/mm2,
r

where pseudodiffusion contribution is negligible) by fitting
the equation

Sb
S0

= 1 − PFð Þexp −bDð Þ: ð2Þ
In order to estimate D⁎, the outcome values of PF and D

were then introduced in Eq. (1) and all multi-b (whole b
range: 0–750 s/mm2) data were subsequently processed.
This two-step fitting procedure was performed using a
semiautomatic homemade software driving the nonlinear
regression algorithms provided in Gnuplot (http://www.
gnuplot.info/, 4.4.2 release).

2.5. Statistical analysis

The mean, S.D. and 95% limits of agreement of ADC
values were calculated for each group, using BH acquisitions,
both at low and high b value (0–300 and 0–1000 s/mm2,
respectively); the ANOVA test was performed to evaluate
differences between ADC group means. The Pearson corre-
lation coefficient (r) was obtained to investigate the association
between ADC (b values 300 and 1000 s/mm2 for BH
acquisitions and 50, 100, 150, 300 s/mm2 for FB acquisitions),
PF, D, D⁎ and age. The variation across all ages of all these
DwI parameters was assessed in a linear regression model. In
case of absence of significant correlation between DwI param-
eters and age, the mean, S.D. and 95% limits of agreement of
all the parameters were calculated considering all the subjects.
t

http://www.gnuplot.info/
http://www.gnuplot.info/


Table 2
PF, D, D⁎ and ADCs of healthy subjects and correlation with age

Method (subj. n) Mean S.D. Mean 95% CI r P r 95% CI

PF FB (16) 28.57 7.40 14.07–43.07 0.30 .26 −0.23 to 0.69
D FB (16) 1090 140 816–1364 −0.28 .30 −0.68 to 0.25
D⁎ FB (16) 26728 9151 8792–44664 −0.27 .32 −0.67 to 0.26
ADC50 FB (16) 3825 454 2935–4715 0.16 .67 −0.52 to 0.71
ADC100 FB (16) 3333 388 2573–4093 0.39 .27 −0.32 to 0.81
ADC150 FB (16) 2966 379 2223–3709 0.36 .31 −0.35 to 0.81
ADC300 FB (16) 2238 251 1746–2730 0.50 .16 −0.13 to 0.87
ADC300 BH (40) 2742 609 1548–3936 0.05 .74 −0.26 to 0.36
ADC1000 BH (40) 1558 192 1182–1934 −0.2 .22 −0.48 to 0.08

PF (%), diffusion coefficient (D, in 10−6 mm2/s), pseudodiffusion coefficient (D⁎, in 10−6 mm2/s), ADCs (ADCx, in 10−6 mm2/s, where x indicates the b value
in s/mm2), mean, S.D., 95% confidence interval (CI) of healthy subjects, with the corresponding Pearson correlation coefficient with age (r, with statistical
significance, P and 95% CI), varying the acquisition method (FB=free-breath, BH=breath-hold) and the number of subjects.
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Finally, the skewness of the distributions of 0–300 and 0–1000
s/mm2 BH acquisition ADC values and FB acquisition D
values was calculated considering the larger and the smaller
cohort, respectively. Skewness is a measure of asymmetry of
the distribution; the greater the absolute value of the skewness,
the greater the asymmetry. The significance level was set at
Pb.05 for all tests. Statistical analysis was performed using
SPSS (release 17.0.0, SPSS Inc., Chicago, IL, USA).

3. Results

Our scanner showed good stability, with all the b values
adopted: repeatability and reproducibility related errors were
always b1%.
Fig. 2. Breath-hold ADC vs. age with linear regression line. Data with b=300 (A; u
between ADC and age, both in A and B, and the wide dispersion of data, more p
For each group, mean, S.D. and 95% confidence interval
of ADC values, calculated on BH with b value=0–300 and
0–1000 s/mm2 Dw images, are reported (Table 1). ANOVA
showed no significant differences in the mean ADC of the
different groups (P always N.05).

No significant correlation between the subject's age and
ADCwas established, considering either BH or FB acquisition
data, obtained at all the considered b values (50, 100, 150, 300,
1000 s/mm2). The same absence of significant correlation with
age was observed for PF, D and D⁎ evaluation. Pearson cor-
relation coefficient for all the DwI parameters, with statistical
significance and 95%confidence interval, is reported (Table 2).
Figs. 2 and 3 show the scatterplots with linear regression line,
respectively, of BH-ADC values and PF, D, D⁎ vs. age.
pper) and b=1000 s/mm2 (B; lower). The absence of a significant correlation
ronounced at b=300 s/mm2 (A), should be noted.

image of Fig. 2


Fig. 3. PF, D, D⁎ vs. age with linear regression line. PF (A; upper),D (B; middle) and D⁎ (C; lower) values. The absence of a significant correlation between PF,
D, D⁎ and age, both in A, B and C, should be noted.
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Given the absence of significant correlation between all
the DwI parameters and age, mean, S.D. and 95% confidence
interval of each DwI parameter were calculated considering
all the subjects belonging to each cohort (Table 2).

Fig. 4 shows BH-ADC histograms for all the 40 subjects
at b=300 and b=1000 s/mm2: the skewness of each
distribution was 0.48 and 0.79 (b=300 and b=1000 s/mm2,
respectively).
4. Discussion and conclusion

Many efforts have been made and are ongoing to estab-
lish a correlation between DwI measurements and physio-
logical changes in the liver where ADC measurements are
frequently used to grade different levels of fibrosis [1,17,
27–32]. ADC is also influenced, prevalently at low b values,
by perfusion, that is strongly related to liver fibrosis and
parenchymal derangement progression during chronic hep-
atitis [6,17,33]. The prevalent influence of perfusion has also
been demonstrated in experimental animals [6]. However, as
reminded in the introduction, there are many other factors,
which could influence DwI quantitative measurements, and
we wondered if among these, there were also the aging.
Subsequently, we have firstly investigated the possible corre-
lation between age and ADC values of the liver without
finding out any significant correlation, either at low-medium
b values (FB acquisitions: 50–100–150–300 s/mm2) or
medium-high b values (BH acquisitions: 300–1000 s/mm2).
This finding is unexpected since in the normal liver, aging
does not imply a fibrotic/cirrhotic-like evolution [33], but it is
well known that there is about a 40% reduction in blood flow
and a similar or slightly less reduction in liver mass [33–39].
The reasons for this age-linked reduction in hepatic blood
flow and volume, which are perhaps related, are still unknown
but perplexing since there seem to be few significant structural
or biochemical changes in the aging liver [40–42]. With a
relevant decrement of liver blood flow, one would presume
that there would be a decrease in ADC values with age, at least
at lower b values. In our series, the width and asymmetry
of ADC histogram not only show that the ADC values are
affected by a perfusion phenomenon, but also that its spread is
probably due to different components of flow and to a large
variability in PFs. This probably also reflects the observed
change in skewness between b=300 and b=1000 s/mm2 ADC
distributions and the symmetry of the D values distribution
(0.48, 0.79 and 0.06, respectively). In fact, at high b value, the
diffusion component is predominant in ADC measurements
and the residual effect of perfusion probably contributes to the
asymmetric right tail of the ADC histogram (Fig. 4): the
absence of asymmetry in theD value distribution supports this
hypothesis. This ADC stability during different ages offers



Fig. 4. Histogram of breath-hold ADC values. Data at b=300 (bin size=260×10−6 mm2/s) (A; left) and b=1000 s/mm2 (bin size=85×10−6 mm2/s) (B; right). The
higher ADC mean value at b=300 s/mm2 (A) compared to b=1000 s/mm2 (B) and the more symmetric shape of ADC distribution in (A) vs. (B) (skewness=0.48
and 0.79, respectively) should be noted.
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the possibility to use, in the future, non-age-matched groups in
studies on liver ADC. Moreover, ADC variation that has
already been observed and reported in the literature cannot
be ascribed to ADC age-related changes: this is important
especially in diffuse liver disease studies, which usually in-
volve older patients. Furthermore, the documented wide range
of liver parenchyma ADC values (at b=1000 s/mm2) among
healthy subjects, from around 1300 to 2000×10−6 mm2/s
(Fig. 2), suggests that it is improbable that this technique
provides a valid mean value as a reference for all or at least
most of the subjects. We can argue that quantitative DwI
seems more useful in following a single subject's disease
over time and is therefore more appropriate for longitudinal
rather than cross-sectional studies. In fact, recent literature
reports have shown that ADC is not satisfactory for dis-
tinguishing different solid focal liver lesions [27,28,43] or
grading fibrosis [3–5,44]. On the contrary, results of the
studies devoted to the evaluation and follow-up of the
response of metastatic liver tumors to chemotherapy are
hopeful [42,44,45].

To better investigate possible age-related quantitative DwI
variations, we examined also PF, D and D⁎ in a smaller
cohort of 16 volunteers (four for each age group), using a
multi-b sequence with many D weightings, which allows an
highly accurate representation of DwI signal decay. Interes-
tingly, we did not find any significant correlation also with
these non-b-linked parameters and age, even if a nonsignif-
icant increase of PF and decrease ofD and D⁎ were observed.
The slight decrease in D value with aging (Table 2) could
find a partial explanation in studies which have reported
that there are significant age-associated reductions in the
fenestration of liver sinusoidal endothelial cells in rats;
increased expression of von Willebrand's factor; and in-
creased deposition of extracellular matrix, basal lamina and
connective tissue elements in the space of Disse [46]. Con-
versely, on the basis of 40% reduction in blood flow, a
significant difference with aging can be expected in flow-
related DwI parameters.

Expressing PF, the fraction of water molecules in the
capillary network (blood) within the voxel, it is possible that
this parameter is insensitive to perfusion changes in liver
aging because in this case, flow and volume equally decrease.
Instead, D⁎ is related to the net capillary flow within the
voxel, and then it seems to be a suitable parameter to study
flow variation. Though, considering that the estimation of
D⁎ is strongly dependent on the lower b value data, where
the standard error is really relevant, it is possible that flow
variation with age might be hidden by the wide dispersion
of data (about ±35%, Table 2).

The first limitation of our study is represented by the
small-sized cohort submitted to the multi-b sequence.
However, the size of our control group is comparable with
those reported in other recent papers [4,8,23] and allows
us to show at least a preliminary trend. Secondly, in our
scanner, echo-navigator technique is not available, and then
we have obtained multi-b sequence in FB modality, surely
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less reproducible than that acquired with navigator. Never-
theless, our results seem to be reliable considering the
slightly dissimilar ADC values with differences that can be
easily explained by the diverse acquisition modalities at
b=300 s/mm2 (BH and FB) and TE (42 and 61 ms for BH
and FB, respectively). Moreover, the use of echo-navigator
would increase significantly the already relevant acquisition
time (8 min and 27 s), reducing the feasibility of the multi-b
sequence (16 in our experience) in clinical practice.

In conclusion, our study on healthy liver parenchyma
indicates that there are no significant variations in liver DwI
quantitative parameters (ADC, PF, D, and D⁎) according to
the age of the subject.
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