104 research outputs found

    Diacylglycerol Kinases: Shaping Diacylglycerol and Phosphatidic Acid Gradients to Control Cell Polarity

    Get PDF
    Diacylglycerol kinases (DGKs) terminate diacylglycerol (DAG) signaling and promote phosphatidic acid (PA) production. Isoform specific regulation of DGKs activity and localization allows DGKs to shape the DAG and PA gradients. The capacity of DGKs to constrain the areas of DAG signaling is exemplified by their role in defining the contact interface between T cells and antigen presenting cells: the immune synapse. Upon T cell receptor engagement, both DGK α and ζ metabolize DAG at the immune synapse thus constraining DAG signaling. Interestingly, their activity and localization are not fully redundant because DGKζ activity metabolizes the bulk of DAG in the cell, whereas DGKα limits the DAG signaling area localizing specifically at the periphery of the immune synapse. When DGKs terminate DAG signaling, the local PA production defines a new signaling domain, where PA recruits and activates a second wave of effector proteins. The best-characterized example is the role of DGKs in protrusion elongation and cell migration. Indeed, upon growth factor stimulation, several DGK isoforms, such as α, ζ, and γ, are recruited and activated at the plasma membrane. Here, local PA production controls cell migration by finely modulating cytoskeletal remodeling and integrin recycling. Interestingly, DGK-produced PA also controls the localization and activity of key players in cell polarity such as aPKC, Par3, and integrin β1. Thus, T cell polarization and directional migration may be just two instances of the general contribution of DGKs to the definition of cell polarity by local specification of membrane identity signaling

    Myeloperoxidase: A New Biomarker of Inflammation in Ischemic Heart Disease and Acute Coronary Syndromes

    Get PDF
    Myeloperoxidase (MPO) is an enzyme stored in azurophilic granules of polymorphonuclear neutrophils and macrophages and released into extracellular fluid in the setting of inflammatory process. The observation that myeloperoxidase is involved in oxidative stress and inflammation has been a leading factor to study myeloperoxidase as a possible marker of plaque instability and a useful clinical tool in the evaluation of patients with coronary heart disease. The purpose of this review is to provide an overview of the pathophysiological, analytical, and clinical characteristics of MPO and to summarize the state of art about the possible clinical use of MPO as a marker for diagnosis and risk stratification of patients with acute coronary syndrome (ACS)

    A multilevel theoretical study to disclose the binding mechanisms of gold(III) bipyridyl compounds as selective aquaglyceroporin inhibitors

    Get PDF
    Structural studies have paved the avenue to a deeper understanding of aquaporins (AQPs), small ancient proteins providing efficient transmembrane pathways for water, small uncharged solutes such as glycerol, and possibly gas molecules. Despite the numerous studies, their roles in health and disease remain to be fully disclosed. The recent discovery of AuIII complexes as potent and selective inhibitors of aquaglyceroporin isoforms paves the way to their possible therapeutic application. The binding of the selective human AQP3 inhibitor, the cationic complex [Au(bipy)Cl2]+ (Aubipy), to the protein channel has been investigated here by means of a multi-level theoretical workflow that includes QM, MD and QM/MM approaches. The hydroxo complex was identified as the prevalent form of Aubipy in physiological media and its binding to AQP3 studied by MD. Both non-covalent and coordinative Aubipy–AQP3 adducts were simulated to probe their role in the modulation of water channel functionality. The electronic structures of representative Aubipy–AQP3 adducts were then analysed to unveil the role played by the metal moiety in their stabilisation. This study spotlights the overall importance of three key aspects for AQP3 inhibition: 1) water speciation of the AuIII complex, 2) stability of non-covalent adducts and 3) conformational changes induced within the pore by the coordinative binding of AuIII. The obtained results are expected to orient future developments in the design of isoform-selective AuIII inhibitors

    Biweekly Hizentra® in Primary Immunodeficiency: a Multicenter, Observational Cohort Study (IBIS)

    Get PDF
    Immunoglobulin G (IgG) replacement therapy is a standard treatment for patients with primary immunodeficiency diseases (PIDs). Hizentra®, a 20% human subcutaneous IgG (SCIG), is approved for biweekly administration for PIDs. The aim of the multicenter IBIS study was to prospectively investigate the efficacy of biweekly Hizentra® compared with previous IVIG or SCIG treatment regimens in patients with PIDs. The study consisted of a 12-month retrospective period followed by 12-month prospective observational period. The main endpoints included pre-infusion IgG concentrations, proportion of patients with serious bacterial infections (SBIs), other infections, hospitalizations due to PID-related illnesses, and days with antibiotics during the study periods. Of the 36 patients enrolled in the study, 35 patients continued the study (mean age 26.1 ± 14.4 years; 68.6% male). The mean pre-infusion IgG levels for prior immunoglobulin regimens during the retrospective period (7.84 ± 2.09 g/L) and the prospective period (8.55 ± 1.76 g/L) did not show any significant variations (p = 0.4964). The mean annual rate of SBIs/patient was 0.063 ± 0.246 for both prospective and retrospective periods. No hospitalizations related to PIDs were reported during the prospective period versus one in the retrospective period. All patients were either very (76.5%) or quite (23.5%) satisfied with biweekly Hizentra® at the end of the study. In conclusion, the IBIS study provided real-world evidence on the efficacy of biweekly Hizentra® in patients with PIDs, thus verifying the data generated by the pharmacometric modeling and simulation study in a normal clinical setting

    Targeted Metabolomics Highlights Dramatic Antioxidant Depletion, Increased Oxidative/Nitrosative Stress and Altered Purine and Pyrimidine Concentrations in Serum of Primary Myelofibrosis Patients

    Get PDF
    To date, little is known concerning the circulating levels of biochemically relevant metabolites (antioxidants, oxidative/nitrosative stress biomarkers, purines, and pyrimidines) in patients with primary myelofibrosis (PMF), a rare form of myeloproliferative tumor causing a dramatic decrease in erythropoiesis and angiogenesis. In this study, using a targeted metabolomic approach, serum samples of 22 PMF patients and of 22 control healthy donors were analyzed to quantify the circulating concentrations of hypoxanthine, xanthine, uric acid (as representative purines), uracil, β-pseudouridine, uridine (as representative pyrimidines), reduced glutathione (GSH), ascorbic acid (as two of the main water-soluble antioxidants), malondialdehyde, nitrite, nitrate (as oxidative/nitrosative stress biomarkers) and creatinine, using well-established HPLC method for their determination. Results showed that PMF patients have dramatic depletions of both ascorbic acid and GSH (37.3- and 3.81-times lower circulating concentrations, respectively, than those recorded in healthy controls, p < 0.0001), accompanied by significant increases in malondialdehyde (MDA) and nitrite + nitrate (4.73- and 1.66-times higher circulating concentrations, respectively, than those recorded in healthy controls, p < 0.0001). Additionally, PMF patients have remarkable alterations of circulating purines, pyrimidines, and creatinine, suggesting potential mitochondrial dysfunctions causing energy metabolism imbalance and consequent increases in these cell energy-related compounds. Overall, these results, besides evidencing previously unknown serum metabolic alterations in PMF patients, suggest that the determination of serum levels of the aforementioned compounds may be useful to evaluate PMF patients on hospital admission for adjunctive therapies aimed at recovering their correct antioxidant status, as well as to monitor patients’ status and potential pharmacological treatments

    The diacylglycerol kinase α/Atypical PKC/β1 integrin pathway in SDF-1α mammary carcinoma invasiveness

    Get PDF
    Diacylglycerol kinase α (DGKα), by phosphorylating diacylglycerol into phosphatidic acid, provides a key signal driving cell migration and matrix invasion. We previously demonstrated that in epithelial cells activation of DGKα activity promotes cytoskeletal remodeling and matrix invasion by recruiting atypical PKC at ruffling sites and by promoting RCP-mediated recycling of α5β1 integrin to the tip of pseudopods. In here we investigate the signaling pathway by which DGKα mediates SDF-1α-induced matrix invasion of MDA-MB-231 invasive breast carcinoma cells. Indeed we showed that, following SDF-1α stimulation, DGKα is activated and localized at cell protrusion, thus promoting their elongation and mediating SDF-1α induced MMP-9 metalloproteinase secretion and matrix invasion. Phosphatidic acid generated by DGKα promotes localization at cell protrusions of atypical PKCs which play an essential role downstream of DGKα by promoting Rac-mediated protrusion elongation and localized recruitment of β1 integrin and MMP-9. We finally demonstrate that activation of DGKα, atypical PKCs signaling and β1 integrin are all essential for MDA-MB-231 invasiveness. These data indicates the existence of a SDF-1α induced DGKα - atypical PKC - β1 integrin signaling pathway, which is essential for matrix invasion of carcinoma cells

    Insights into the mechanisms of aquaporin-3 inhibition by gold(III) complexes: the importance of non-coordinative adduct formation

    Get PDF
    A series of six new Au(III) coordination compounds with phenanthroline ligands have been synthesized and studied for the inhibition of the water and glycerol channel aquaporin-3 (AQP3). From a combination of different experimental and computational approaches, further insights into the mechanisms of AQP3 inhibition by gold compounds at a molecular level have been gained. The results evidence the importance of noncoordinative adduct formation, prior to “covalent” protein binding, to achieve selective AQP3 inhibition

    Nutrition and IBD: Malnutrition and/or Sarcopenia? A Practical Guide

    Get PDF
    Malnutrition is a major complication of inflammatory bowel disease (IBD). This mini review is focusing on main determinants of malnutrition in IBD, the most important components of malnutrition, including lean mass loss and sarcopenia, as an emerging problem. Each one of these components needs to be well considered in a correct nutritional evaluation of an IBD patient in order to build a correct multidisciplinary approach. The review is then focusing on possible instrumental and clinical armamentarium for the nutritional evaluation

    The Silent Epidemic of Diabetic Ketoacidosis at Diagnosis of Type 1 Diabetes in Children and Adolescents in Italy During the COVID-19 Pandemic in 2020

    Get PDF
    To compare the frequency of diabetic ketoacidosis (DKA) at diagnosis of type 1 diabetes in Italy during the COVID-19 pandemic in 2020 with the frequency of DKA during 2017-2019

    Measurement of the W boson polarisation in ttˉt\bar{t} events from pp collisions at s\sqrt{s} = 8 TeV in the lepton + jets channel with ATLAS

    Get PDF
    corecore