2,302 research outputs found
Dynamics of Nucleation in the Ising Model
Reactive pathways to nucleation in a three-dimensional Ising model at 60% of
the critical temperature are studied using transition path sampling of single
spin flip Monte Carlo dynamics. Analysis of the transition state ensemble (TSE)
indicates that the critical nuclei are rough and anisotropic. The TSE,
projected onto the free energy surface characterized by cluster size, N, and
surface area, S, indicates the significance of other variables in addition to
these two traditional reaction coordinates for nucleation. The transmission
coefficient along N is ~ 0.35, and this reduction of the transmission
coefficient from unity is explained in terms of the stochastic nature of the
dynamic model.Comment: In press at the Journal of Physical Chemistry B, 7 pages, 8 figure
Aluminum arsenide cleaved-edge overgrown quantum wires
We report conductance measurements in quantum wires made of aluminum
arsenide, a heavy-mass, multi-valley one-dimensional (1D) system. Zero-bias
conductance steps are observed as the electron density in the wire is lowered,
with additional steps observable upon applying a finite dc bias. We attribute
these steps to depopulation of successive 1D subbands. The quantum conductance
is substantially reduced with respect to the anticipated value for a spin- and
valley-degenerate 1D system. This reduction is consistent with
disorder-induced, intra-wire backscattering which suppresses the transmission
of 1D modes. Calculations are presented to demonstrate the role of strain in
the 1D states of this cleaved-edge structure.Comment: Submitted to Applied Physics Letter
Classical-to-stochastic Coulomb blockade cross-over in aluminum arsenide wires
We report low-temperature differential conductance measurements in aluminum
arsenide cleaved-edge overgrown quantum wires in the pinch-off regime. At zero
source-drain bias we observe Coulomb blockade conductance resonances that
become vanishingly small as the temperature is lowered below . We
show that this behavior can be interpreted as a classical-to-stochastic Coulomb
blockade cross-over in a series of asymmetric quantum dots, and offer a
quantitative analysis of the temperature-dependence of the resonances
lineshape. The conductance behavior at large source-drain bias is suggestive of
the charge density wave conduction expected for a chain of quantum dots.Comment: version 2: new figure 4, refined discussio
Infrared Hall effect in high Tc superconductors: Evidence for non-Fermi liquid Hall scattering
Infrared (20-120 cm-1 and 900-1100 cm-1) Faraday rotation and circular
dichroism are measured in high Tc superconductors using sensitive polarization
modulation techniques. Optimally doped YBCO thin films are studied at
temperatures down to 15 K and magnetic fields up to 8 T. At 1000 cm-1 the Hall
conductivity varies strongly with temperature in contrast to the longitudinal
conductivity which is nearly independent of temperature. The Hall scattering
rate has a T^2 temperature dependence but, unlike a Fermi liquid, depends only
weakly on frequency. The experiment puts severe constraints on theories of
transport in the normal state of high Tc superconductors.Comment: 8 pages, 3 figure
Improving the Sensitivity of LISA
It has been shown in the past, that the six Doppler data streams obtained
LISA configuration can be combined by appropriately delaying the data streams
for cancelling the laser frequency noise. Raw laser noise is several orders of
magnitude above the other noises and thus it is essential to bring it down to
the level of shot, acceleration noises. A rigorous and systematic formalism
using the techniques of computational commutative algebra was developed which
generates all the data combinations cancelling the laser frequency noise. The
relevant data combinations form a first module of syzygies. In this paper we
use this formalism for optimisation of the LISA sensitivity by analysing the
noise and signal covariance matrices. The signal covariance matrix, averaged
over polarisations and directions, is calculated for binaries whose frequency
changes at most adiabatically. We then present the extremal SNR curves for all
the data combinations in the module. They correspond to the eigenvectors of the
noise and signal covariance matrices. We construct LISA `network' SNR by
combining the outputs of the eigenvectors which improves the LISA sensitivity
substantially. The maximum SNR curve can yield an improvement upto 70 % over
the Michelson, mainly at high frequencies, while the improvement using the
network SNR ranges from 40 % to over 100 %. Finally, we describe a simple toy
model, in which LISA rotates in a plane. In this analysis, we estimate the
improvement in the LISA sensitivity, if one switches from one data combination
to another as it rotates. Here the improvement in sensitivity, if one switches
optimally over three cyclic data combinations of the eigenvector is about 55 %
on an average over the LISA band-width. The corresponding SNR improvement is 60
%, if one maximises over the module.Comment: 16 pages, 10 figures, Submitted to Class. Quant. Gravit
Time-dependent distinguishability: Choosing to be a wave or a particle
Interference experiments with connected parametric down-converters have demonstrated that the possibility, in principle, of identifying the photon path through the interferometer is sufficient to wipe out all interference, irrespective of whether the identification is actually made. The distinguishability of the photon path can be controlled by a time-dependent shutter, which leaves the choice whether the photon behaves as a wave or as a particle in the experimenter's hands. By contrast, in some more recent experiments involving the addition of a low-Q cavity, each idler photon makes the choice whether the associated signal photon behaves like a wave and exhibits interference, or like a particle
Generic Tracking of Multiple Apparent Horizons with Level Flow
We report the development of the first apparent horizon locator capable of
finding multiple apparent horizons in a ``generic'' numerical black hole
spacetime. We use a level-flow method which, starting from a single arbitrary
initial trial surface, can undergo topology changes as it flows towards
disjoint apparent horizons if they are present. The level flow method has two
advantages: 1) The solution is independent of changes in the initial guess and
2) The solution can have multiple components. We illustrate our method of
locating apparent horizons by tracking horizon components in a short
Kerr-Schild binary black hole grazing collision.Comment: 13 pages including figures, submitted to Phys Rev
Momentum-Resolved Tunneling into Fractional Quantum Hall Edges
Tunneling from a two-dimensional contact into quantum-Hall edges is
considered theoretically for a case where the barrier is extended, uniform, and
parallel to the edge. In contrast to previously realized tunneling geometries,
details of the microscopic edge structure are exhibited directly in the voltage
and magnetic-field dependence of the differential tunneling conductance. In
particular, it is possible to measure the dispersion of the edge-magnetoplasmon
mode, and the existence of additional, sometimes counterpropagating,
edge-excitation branches could be detected.Comment: 4 pages, 3 figures, RevTex
Two-dimensional hole precession in an all-semiconductor spin field effect transistor
We present a theoretical study of a spin field-effect transistor realized in
a quantum well formed in a p--doped ferromagnetic-semiconductor-
nonmagnetic-semiconductor-ferromagnetic-semiconductor hybrid structure. Based
on an envelope-function approach for the hole bands in the various regions of
the transistor, we derive the complete theory of coherent transport through the
device, which includes both heavy- and light-hole subbands, proper modeling of
the mode matching at interfaces, integration over injection angles, Rashba spin
precession, interference effects due to multiple reflections, and gate-voltage
dependences. Numerical results for the device current as a function of
externally tunable parameters are in excellent agreement with approximate
analytical formulae.Comment: 9 pages, 11 figure
Optical Conductivity and Hall Coefficient in High-Tc Superconductors: Significant Role of Current Vertex Corrections
We study AC conductivities in high-Tc cuprates, which offer us significant
information to reveal the true electronic ground states. Based on the
fluctuation-exchange (FLEX) approximation, current vertex corrections (CVC's)
are correctly taken into account to satisfy the conservation laws. We find the
significant role of the CVC's on the optical Hall conductivity in the presence
of strong antiferromagnetic (AF) fluctuations. This fact leads to the failure
of the relaxation time approximation (RTA). As a result, experimental highly
unusual behaviors, (i) prominent frequency and temperature dependences of the
optical Hall coefficient, and (ii) simple Drude form of the optical Hall andge
for wide range of frequencies, are satisfactorily reproduced. In conclusion,
both DC and AC transport phenomena in (slightly under-doped) high-Tc cuprates
can be explained comprehensively in terms of nearly AF Fermi liquid, if one
take the CVC's into account.Comment: 5 page
- …