745 research outputs found

    Electrostatics of Edge States of Quantum Hall Systems with Constrictions: Metal--Insulator Transition Tuned by External Gates

    Full text link
    The nature of a metal--insulator transition tuned by external gates in quantum Hall (QH) systems with point constrictions at integer bulk filling, as reported in recent experiments of Roddaro et al. [1], is addressed. We are particularly concerned here with the insulating behavior--the phenomena of backscattering enhancement induced at high gate voltages. Electrostatics calculations for QH systems with split gates performed here show that observations are not a consequence of interedge interactions near the point contact. We attribute the phenomena of backscattering enhancement to a splitting of the integer edge into conducting and insulating stripes, which enable the occurrence of the more relevant backscattering processes of fractionally charged quasiparticles at the point contact. For the values of the parameters used in the experiments we find that the conducting channels are widely separated by the insulating stripes and that their presence alters significantly the low-energy dynamics of the edges. Interchannel impurity scattering does not influence strongly the tunneling exponents as they are found to be irrelevant processes at low energies. Exponents of backscattering at the point contact are unaffected by interchannel Coulomb interactions since all channels have same chirality of propagation.Comment: 19 pages; To appear in Phys. Rev.

    Comparison of AlloDerm and AlloMax tissue incorporation in rats.

    Get PDF
    BackgroundHuman acellular dermal matrices (HADMs) are used in a variety of settings. AlloMax is a new HADM currently being used for breast reconstruction and hernia repair. We compared the in vivo tissue integration of AlloMax to AlloDerm, a well-studied HADM, in rats.MethodsWe implanted AlloDerm and AlloMax patches into subcutaneous pockets on the backs of 32 male Sprague-Dawley rats. The animals were killed after either 4 or 8 weeks, and the patches were recovered and stained for histopathologic analyses. Microscopic end points included patch thickness, vascularization, tissue in-growth, fibroblast proliferation, and inflammation.ResultsAll animals completed the study without complications or infection. There were no significant differences in graft thicknesses at 4 and 8 weeks. Microscopically, at 4 weeks, AlloDerm sections had significantly more microvessels than AlloMax (P = 0.02). This disparity increased by 8 weeks (P < 0.01). Similarly, we found greater tissue in-growth and fibroblast proliferation in AlloDerm than AlloMax sections at 4 (P < 0.01) and at 8 (P < 0.01) weeks. Inflammatory infiltrates consisted of lymphocytes, histiocytes, eosinophils, and plasma cells. Deep graft infiltration by predominately lymphocytic inflammatory cells was significantly higher in AlloDerm than AlloMax grafts at 4 (P = 0.01) and 8 (P = 0.02) weeks. Graft necrosis was uncommon, but marginal fibrosis was similar in both.ConclusionsAlloDerm grafts had greater neovascularization, tissue infiltration, fibroblast proliferation, and inflammatory reaction than AlloMax grafts when placed subcutaneously in rats. AlloDerm may be better incorporated than AlloMax when placed in vivo

    Evolution of Landau Levels into Edge States at an Atomically Sharp Edge in Graphene

    Full text link
    The quantum-Hall-effect (QHE) occurs in topologically-ordered states of two-dimensional (2d) electron-systems in which an insulating bulk-state coexists with protected 1d conducting edge-states. Owing to a unique topologically imposed edge-bulk correspondence these edge-states are endowed with universal properties such as fractionally-charged quasiparticles and interference-patterns, which make them indispensable components for QH-based quantum-computation and other applications. The precise edge-bulk correspondence, conjectured theoretically in the limit of sharp edges, is difficult to realize in conventional semiconductor-based electron systems where soft boundaries lead to edge-state reconstruction. Using scanning-tunneling microscopy and spectroscopy to follow the spatial evolution of bulk Landau-levels towards a zigzag edge of graphene supported above a graphite substrate we demonstrate that in this system it is possible to realize atomically sharp edges with no edge-state reconstruction. Our results single out graphene as a system where the edge-state structure can be controlled and the universal properties directly probed.Comment: 16 pages, 4 figure

    Hall effect in the marginal Fermi liquid regime of high-Tc superconductors

    Full text link
    The detailed derivation of a theory for transport in quasi-two-dimensional metals, with small-angle elastic scattering and angle-independent inelastic scattering is presented. The transport equation is solved for a model Fermi surface representing a typical cuprate superconductor. Using the small-angle elastic and the inelastic scattering rates deduced from angle-resolved photoemission experiments, good quantitative agreement with the observed anomalous temperature dependence of the Hall angle in optimally doped cuprates is obtained, while the resistivity remains linear in temperature. The theory is also extended to the frequency-dependent complex Hall angle

    Infrared Hall effect in high Tc superconductors: Evidence for non-Fermi liquid Hall scattering

    Full text link
    Infrared (20-120 cm-1 and 900-1100 cm-1) Faraday rotation and circular dichroism are measured in high Tc superconductors using sensitive polarization modulation techniques. Optimally doped YBCO thin films are studied at temperatures down to 15 K and magnetic fields up to 8 T. At 1000 cm-1 the Hall conductivity varies strongly with temperature in contrast to the longitudinal conductivity which is nearly independent of temperature. The Hall scattering rate has a T^2 temperature dependence but, unlike a Fermi liquid, depends only weakly on frequency. The experiment puts severe constraints on theories of transport in the normal state of high Tc superconductors.Comment: 8 pages, 3 figure

    BICEP3 performance overview and planned Keck Array upgrade

    Get PDF
    Bicep3 is a 520mm aperture, compact two-lens refractor designed to observe the polarization of the cosmic microwave background (CMB) at 95 GHz. Its focal plane consists of modularized tiles of antenna-coupled transition edge sensors (TESs), similar to those used in Bicep2 and the Keck Array. The increased per-receiver optical throughput compared to Bicep2/Keck Array, due to both its faster f=1:7 optics and the larger aperture, more than doubles the combined mapping speed of the Bicep/Keck program. The Bicep3 receiver was recently upgraded to a full complement of 20 tiles of detectors (2560 TESs) and is now beginning its second year of observation (and first science season) at the South Pole. We report on its current performance and observing plans. Given its high per-receiver throughput while maintaining the advantages of a compact design, Bicep3- class receivers are ideally suited as building blocks for a 3rd-generation CMB experiment, consisting of multiple receivers spanning 35 GHz to 270 GHz with total detector count in the tens of thousands. We present plans for such an array, the new "BICEP Array" that will replace the Keck Array at the South Pole, including design optimization, frequency coverage, and deployment/observing strategies

    High-density information storage in an absolutely defined aperiodic sequence of monodisperse copolyester

    Get PDF
    Synthesis of a polymer composed of a large discrete number of chemically distinct monomers in an absolutely defined aperiodic sequence remains a challenge in polymer chemistry. The synthesis has largely been limited to oligomers having a limited number of repeating units due to the difficulties associated with the step-by-step addition of individual monomers to achieve high molecular weights. Here we report the copolymers of ??-hydroxy acids, poly(phenyllactic-co-lactic acid) (PcL) built via the cross-convergent method from four dyads of monomers as constituent units. Our proposed method allows scalable synthesis of sequence-defined PcL in a minimal number of coupling steps from reagents in stoichiometric amounts. Digital information can be stored in an aperiodic sequence of PcL, which can be fully retrieved as binary code by mass spectrometry sequencing. The information storage density (bit/Da) of PcL is 50% higher than DNA, and the storage capacity of PcL can also be increased by adjusting the molecular weight (~38???kDa)

    BICEP3: a 95 GHz refracting telescope for degree-scale CMB polarization

    Full text link
    BICEP3 is a 550 mm-aperture refracting telescope for polarimetry of radiation in the cosmic microwave background at 95 GHz. It adopts the methodology of BICEP1, BICEP2 and the Keck Array experiments - it possesses sufficient resolution to search for signatures of the inflation-induced cosmic gravitational-wave background while utilizing a compact design for ease of construction and to facilitate the characterization and mitigation of systematics. However, BICEP3 represents a significant breakthrough in per-receiver sensitivity, with a focal plane area 5×\times larger than a BICEP2/Keck Array receiver and faster optics (f/1.6f/1.6 vs. f/2.4f/2.4). Large-aperture infrared-reflective metal-mesh filters and infrared-absorptive cold alumina filters and lenses were developed and implemented for its optics. The camera consists of 1280 dual-polarization pixels; each is a pair of orthogonal antenna arrays coupled to transition-edge sensor bolometers and read out by multiplexed SQUIDs. Upon deployment at the South Pole during the 2014-15 season, BICEP3 will have survey speed comparable to Keck Array 150 GHz (2013), and will significantly enhance spectral separation of primordial B-mode power from that of possible galactic dust contamination in the BICEP2 observation patch.Comment: 12 pages, 5 figures. Presented at SPIE Astronomical Telescopes and Instrumentation 2014: Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VII. To be published in Proceedings of SPIE Volume 915
    corecore