35,559 research outputs found

    Finding an identity and meeting a standard : connecting the conflicting in teacher induction

    Get PDF
    This article has the apparently contradictory aims of describing a discourse of new teachers that is at odds with the policy-derived competence-based discourse of the professional standard for teachers, but of also seeking to find some points of connection that may help start a dialogue between policy and research. The experience of new teachers is conceptualized as personal stories of identity formation with a clear emotional-relational dimension and a sense of self and intrinsic purpose in which others, especially colleagues and children, are central - themes not visible in the standard. The empirical context is that of new teachers in Scotland but the argument is supported through a wider literature that extends beyond the traditional limits of teacher education, drawing on, for example, notions of self-identity, pure relationship and ontological security in the work of Giddens. Whether a more constructive dialogue can begin depends partly on the extent to which the formal standard can be expected to capture the complex, personal nature of the beginner's experience, and partly on the possibility of research identifying particular areas of competence, such as understanding difference, that connect in some way to the standard

    Anisotropic valence-->core x-ray fluorescence from a [Rh(en)3][Mn(N)(CN)5]·H2O single crystal: Experimental results and density functional calculations

    Get PDF
    High resolution x-ray fluorescence spectra have been recorded for emission in different directions from a single crystal of the compound [Rh(en)3][Mn(N)(CN)5]·H2O. The spectra are interpreted by comparison with density functional theory (DFT) electronic structure calculations. The Kbeta[double-prime] line, which is strongly polarized along the Mn–N axis, can be viewed as an N(2s)-->Mn(1s) transition, and the angular dependence is understood within the dipole approximation. The so-called Kbeta2,5 region has numerous contributions but is dominated by Mn(4p) and C(2s)-->Mn(1s) transitions. Transition energy splittings are found in agreement with those of calculated occupied molecular orbitals to within 1 eV. Computed relative transition probabilities reproduce experimentally observed trends

    Large scale emergent properties of an autocatalytic reaction-diffusion model subject to noise

    Get PDF
    The non-equilibrium dynamic fluctuations of a stochastic version of the Gray-Scott (GS) model are studied analytically in leading order in perturbation theory by means of the dynamic renormalization group. There is an attracting stable fixed point at one-loop order, and the asymptotic scaling of the correlation functions is predicted for both spatial and temporally correlated noise sources. New effective three-body reaction terms, not present in the original GS model, are induced by the combined interplay of the fluctuations and nonlinearities.Comment: 13 pages, 2 figure

    Fluid-Induced Propulsion of Rigid Particles in Wormlike Micellar Solutions

    Get PDF
    In the absence of inertia, a reciprocal swimmer achieves no net motion in a viscous Newtonian fluid. Here, we investigate the ability of a reciprocally actuated particle to translate through a complex fluid that possesses a network using tracking methods and birefringence imaging. A geometrically polar particle, a rod with a bead on one end, is reciprocally rotated using magnetic fields. The particle is immersed in a wormlike micellar (WLM) solution that is known to be susceptible to the formation of shear bands and other localized structures due to shear-induced remodeling of its microstructure. Results show that the nonlinearities present in this WLM solution break time-reversal symmetry under certain conditions, and enable propulsion of an artificial "swimmer." We find three regimes dependent on the Deborah number (De): net motion towards the bead-end of the particle at low De, net motion towards the rod-end of the particle at intermediate De, and no appreciable propulsion at high De. At low De, where the particle time-scale is longer then the fluid relaxation time, we believe that propulsion is caused by an imbalance in the fluid first normal stress differences between the two ends of the particle (bead and rod). At De~1, however, we observe the emergence of a region of network anisotropy near the rod using birefringence imaging. This anisotropy suggests alignment of the micellar network, which is "locked in" due to the shorter time-scale of the particle relative to the fluid

    Strain-mediated metal-insulator transition in epitaxial ultra-thin films of NdNiO3

    Full text link
    We have synthesized epitaxial NdNiO3_{3} ultra-thin films in a layer-by-layer growth mode under tensile and compressive strain on SrTiO3_{3} (001) and LaAlO3_3 (001), respectively. A combination of X-ray diffraction, temperature dependent resistivity, and soft X-ray absorption spectroscopy has been applied to elucidate electronic and structural properties of the samples. In contrast to the bulk NdNiO3_{3}, the metal-insulator transition under compressive strain is found to be completely quenched, while the transition remains under the tensile strain albeit modified from the bulk behavior.Comment: 4 pages, 4 figure

    Effect of polar discontinuity on the growth of LaNiO3/LaAlO3 superlattices

    Full text link
    We have conducted a detailed microscopic investigation of [LaNiO3(1 u.c.)/LaAlO3(1 u.c.)]N superlattices grown on (001) SrTiO3 and LaAlO3 to explore the influence of polar mismatch on the resulting electronic and structural properties. Our data demonstrate that the initial growth on the non-polar SrTiO3 surface leads to a rough morphology and unusual 2+ valence of Ni in the first LaNiO3 layer, which is not observed after growth on the polar surface of LaAlO3. A newly devised model suggests that the polar mismatch can be resolved if the perovskite layers grow with an excess of LaO, which also accounts for the observed electronic, chemical, and structural effects.Comment: 3 pages, 3 figure

    Investigations Into Premature Rock Bolt Failures in the Australian Coal Mining Industry

    Get PDF
    An ACARP project was initiated in 1999 to address the observed phenomenon of premature failure of rock bolts in a number of Australian coal mines, and with a particular focus on the problem of Stress Corrosion Cracking (SCC) in rock bolts. This paper briefly outlines the findings of this study

    Sub-monolayer nucleation and growth of complex oxide heterostructures at high supersaturation and rapid flux modulation

    Full text link
    We report on the non-trivial nanoscale kinetics of the deposition of novel complex oxide heterostructures composed of a unit-cell thick correlated metal LaNiO3 and dielectric LaAlO3. The multilayers demonstrate exceptionally good crystallinity and surface morphology maintained over the large number of layers, as confirmed by AFM, RHEED, and synchrotron X-ray diffraction. To elucidate the physics behind the growth, the temperature of the substrate and the deposition rate were varied over a wide range and the results were treated in the framework of a two-layer model. These results are of fundamental importance for synthesis of new phases of complex oxide heterostructures.Comment: 13 pages, 6 figure

    Predicting criticality and dynamic range in complex networks: effects of topology

    Full text link
    The collective dynamics of a network of coupled excitable systems in response to an external stimulus depends on the topology of the connections in the network. Here we develop a general theoretical approach to study the effects of network topology on dynamic range, which quantifies the range of stimulus intensities resulting in distinguishable network responses. We find that the largest eigenvalue of the weighted network adjacency matrix governs the network dynamic range. Specifically, a largest eigenvalue equal to one corresponds to a critical regime with maximum dynamic range. We gain deeper insight on the effects of network topology using a nonlinear analysis in terms of additional spectral properties of the adjacency matrix. We find that homogeneous networks can reach a higher dynamic range than those with heterogeneous topology. Our analysis, confirmed by numerical simulations, generalizes previous studies in terms of the largest eigenvalue of the adjacency matrix.Comment: 4 pages, 3 figure

    Detection of bacterial spores with lanthanide-macrocycle binary complexes

    Get PDF
    The detection of bacterial spores via dipicolinate-triggered lanthanide luminescence has been improved in terms of detection limit, stability, and susceptibility to interferents by use of lanthanide−macrocycle binary complexes. Specifically, we compared the effectiveness of Sm, Eu, Tb, and Dy complexes with the macrocycle 1,4,7,10-tetraazacyclododecane-1,7-diacetate (DO2A) to the corresponding lanthanide aquo ions. The Ln(DO2A)^+ binary complexes bind dipicolinic acid (DPA), a major constituent of bacterial spores, with greater affinity and demonstrate significant improvement in bacterial spore detection. Of the four luminescent lanthanides studied, the terbium complex exhibits the greatest dipicolinate binding affinity (100-fold greater than Tb^(3+) alone, and 10-fold greater than other Ln(DO2A)^+ complexes) and highest quantum yield. Moreover, the inclusion of DO2A extends the pH range over which Tb−DPA coordination is stable, reduces the interference of calcium ions nearly 5-fold, and mitigates phosphate interference 1000-fold compared to free terbium alone. In addition, detection of Bacillus atrophaeus bacterial spores was improved by the use of Tb(DO2A)^+, yielding a 3-fold increase in the signal-to-noise ratio over Tb^(3+). Out of the eight cases investigated, the Tb(DO2A)^+ binary complex is best for the detection of bacterial spores
    • …
    corecore