35,135 research outputs found

    Probing the Phase Diagram of Bi2Sr2CaCu2O8+d with Tunneling Spectroscopy

    Get PDF
    Tunneling measurements are performed on Ca-rich single crystals of Bi2Sr2CaCu2O8+d (Bi2212), with various oxygen doping levels, using a novel point contact method. At 4.2 K, SIN and SIS tunnel junctions are obtained with well-defined quasiparticle peaks, robust dip and hump features and in some cases Josephson currents. The doping dependence of tunneling conductances of Ca-rich Bi2212 are analyzed and compared to stoichiometric Bi2212. A similar profile of energy gap vs. doping concentration is found although the Ca-rich samples have a slighly smaller optimum Tc and therefore smaller gap values for any doping level. The evolution of tunneling conductance peak height to background ratios with hole concentration are compared. For a given doping level, the Ca-rich spectra showed more broadened features compared to the stoichiometric counterparts, most likely due to increased disorder from the excess Ca. Comparison of the dip and hump features has provided some potential insights into their origins.Comment: 4 pages, 4 figures; presented at the Applied Superconductivity Conference (August 4-9, 2002) in Houston, TX; to be published in IEEE Trans. Appl. Supercon

    Rebuttal to "Comment by V.M. Krasnov on 'Counterintuitive consequence of heating in strongly-driven intrinsic junctions of Bi2Sr2CaCu2O8+d Mesas' "

    Get PDF
    In our article [1], we found that with increasing dissipation there is a clear, systematic shift and sharpening of the conductance peak along with the disappearance of the higher-bias dip/hump features (DHF), for a stack of intrinsic Josephson junctions (IJJs) of intercalated Bi2Sr2CaCu2O8+{\delta} (Bi2212). Our work agrees with Zhu et al [2] on unintercalated, pristine Bi2212, as both studies show the same systematic changes with dissipation. The broader peaks found with reduced dissipation [1,2] are consistent with broad peaks in the density-of-states (DOS) found among scanning tunneling spectroscopy [3] (STS), mechanical contact tunneling [4] (MCT) and inferred from angle (momentum) resolved photoemission spectroscopy [5] (ARPES); results that could not be ignored. Thus, sharp peaks are extrinsic and cannot correspond to the superconducting DOS. We suggested that the commonality of the sharp peaks in our conductance data, which is demonstrably shown to be heating-dominated, and the peaks of previous intrinsic tunneling spectroscopy (ITS) data implies that these ITS reports might need reinterpretation.Comment: Rebuttal to Comment of Krasnov arXiv:1007.451

    Surface pressure measurements at two tips of a model helicopter rotor in hover

    Get PDF
    Surface pressures were measured near the tip of a hovering single-bladed model helicopter rotor with two tip shapes. The rotor had a constant-chord, untwisted blade with a square, flat tip which could be modified to a body-of-revolution tip. Pressure measurements were made on the blade surface along the chordwise direction at six radial stations outboard of the 94 percent blade radius. Data for each blade tip configuration were taken at blade collective pitch angles of 0, 6.18 and 11.4 degrees at a Reynolds number of 736,000 and a Mach number of 0.25 both based on tip speed. Chordwise pressure distributions and constant surface pressure contours are presented and discussed

    Single Junction and Intrinsic Josephson Junction Tunneling Spectroscopies of Bi2Sr2CaCu2O8+d

    Get PDF
    Tunneling spectroscopy measurements are reported on optimally-doped and overdoped Bi2_{2}Sr2_{2}CaCu2_{2}O8+δ_{8+\delta} single crystals. A novel point contact method is used to obtain superconductor-insulator-normal metal (SIN) and SIS break junctions as well as intrinsic Josephson junctions (IJJ) from nanoscale crystals. Three junction types are obtained on the same crystal to compare the quasiparticle peaks and higher bias dip/hump structures which have also been found in other surface probes such as scanning tunneling spectroscopy and angle-resolved photoemission spectroscopy. However, our IJJ quasiparticle spectra consistently reveal very sharp conductance peaks and no higher bias dip structures. The IJJ conductance peak voltage divided by the number of junctions in the stack consistently leads to a significant underestimate of Δ\Delta when compared to the single junction values. The comparison of the three methods suggests that the markedly different characteristics of IJJ are a consequence of nonequilibrium effects and are not intrinsic quasiparticle features.Comment: 4 pages, 4 figures; presented at the Applied Superconductivity Conference (October 3-8, 2004) in Jacksonville, FL; to be published in IEEE Trans. Appl. Supercon

    Ratiometric spectral imaging for fast tumor detection and chemotherapy monitoring in vivo

    Get PDF
    We report a novel in vivo spectral imaging approach to cancer detection and chemotherapy assessment. We describe and characterize a ratiometric spectral imaging and analysis method and evaluate its performance for tumor detection and delineation by quantitatively monitoring the specific accumulation of targeted gallium corrole (HerGa) into HER2-positive (HER2 +) breast tumors. HerGa temporal accumulation in nude mice bearing HER2 + breast tumors was monitored comparatively by a. this new ratiometric imaging and analysis method; b. established (reflectance and fluorescence) spectral imaging; c. more commonly used fluorescence intensity imaging. We also tested the feasibility of HerGa imaging in vivo using the ratiometric spectral imaging method for tumor detection and delineation. Our results show that the new method not only provides better quantitative information than typical spectral imaging, but also better specificity than standard fluorescence intensity imaging, thus allowing enhanced in vivo outlining of tumors and dynamic, quantitative monitoring of targeted chemotherapy agent accumulation into them

    Tunneling study of cavity grade Nb: possible magnetic scattering at the surface

    Full text link
    Tunneling spectroscopy was performed on Nb pieces prepared by the same processes used to etch and clean superconducting radio frequency (SRF) cavities. Air exposed, electropolished Nb exhibited a surface superconducting gap delta=1.55 meV, characteristic of clean, bulk Nb. However the tunneling density of states (DOS) was broadened significantly. The Nb pieces treated with the same mild baking used to improve the Q-slope in SRF cavities, reveal a sharper DOS. Good fits to the DOS were obtained using Shiba theory, suggesting that magnetic scattering of quasiparticles is the origin of the gapless surface superconductivity and a heretofore unrecognized contributor to the Q-slope problem of Nb SRF cavities.Comment: 3 pages, 3 figure
    corecore