38,628 research outputs found

    Hydrodynamic air lubricated compliant surface bearing for an automotive gas turbine engine. 2: Materials and coatings

    Get PDF
    Material coatings for an air-lubricated, compliant journal bearing for an automotive gas turbine engine were exposed to service test temperatures of 540 C or 650 C for 300 hours, and to 10 temperature cycles from room temperatures to the service test temperatures. Selected coatings were then put on journal and partial-arc foils and tested in start-stop cycle tests at 14 kPa (2 psi) loading for 2000 cycles. Half of the test cycles were performed at a test chamber service temperature of 540 C (1000 F) or 650 C (1200 F); the other half were performed at room temperature. Based on test results, the following combinations and their service temperature limitations are recommended: HL-800 TM (CdO and graphite) on foil versus chrome carbide on journal up to 370 C (700 F); NASA PS 120 (Tribaloy 400, silver and CaF2 on journal versus uncoated foil up to 540 C (1000 F); and Kaman DES on journal and foil up to 640 C (1200 F). Kaman DES coating system was further tested successfully at 35 kPa (5 psi) loading for 2000 start-stop cycles

    Chemical dynamics

    Get PDF
    CHEMICAL EDUCATION is changing rapidly, not only because of the explosive growth of knowledge but also because the new knowledge has stimulated reformulation of working principles in the science. Undergraduate curricula and individual courses are in constant flux. Nowhere is the change and challenge greater than in freshman chemistry. Teachers of freshmen must meet the intellectual needs of students who have had more sophisticated and stimulating high school courses than those given a decade ago. At the same time, the freshman teacher must be aware of the constant modification of the more advanced courses in chemistry and other fields that his students will study later. Continuous reformulation of courses sometimes results in the inclusion of valuable new material at the expense of other equally valuable material. We believe that this has happened in some of the sophisticated courses in freshman chemistry. Structural chemistry often receives far greater emphasis than chemical dynamics. In 1965, the Westheimer Report (Chemistry: Opportunities and Needs, National Academy of Sciences, 1965) identified the three major fields of chemistry as structure, dynamics, and synthesis. We firmly believe that a balanced course in general chemistry should reflect the outlook of this report. The study of modern chemical synthesis is too demanding to be covered in depth in an introductory course. However, chemical dynamics -- the systematic study of reactions and reactivity -- can and should be studied at the freshman level. The study of changing chemical systems is the most fascinating part of the field for many students, and its early introduction forms a solid foundation for later study. This small volume is our attempt to answer the need. The book is intended for students who have had introductory stoichiometry, energetics, and structure at the level of a modern freshman textbook (for example, Basic Principles of Chemistry, by H. B. Gray and G. P. Haight, Jr., W. A. Benjamin, Inc., New York, 1961). Chemical Dynamics is designed to accompany approximately 20-25 lectures to be given as the concluding section of a freshman chemistry course. We have chosen topics for their fundamental importance in dynamics and then tried to develop a presentation suitable for freshman classes. Discussion of each topic is limited, because chemistry majors will inevitably return to all the subject matter in more advanced courses. We hope that the following ideas have been introduced with a firm conceptual basis and in enough detail for the student to apply them to chemical reality. 1. Thermodynamics and kinetics are two useful measures of reactivity. 2. Characteristic patterns of reactivity are systematically related to molecular geometry and electronic structure. 3. Reaction mechanisms are fascinating in their own right and indispensable for identification of significant problems in reaction rate theory. 4. The concepts underlying experiments with elementary reaction processes (molecular beams) are simple, even though the engineering of the experiments is complicated. 5. Application of theories of elementary reaction rates to most reactions (slow reactions, condensed media, etc.) provides enough challenge to satisfy the most ambitious young scientist. The book includes exercises at the end of each chapter except the last. Their purpose is didactic, inasmuch as most have been written with the aim of strengthening a particular point emphasized in the chapter, or of introducing an important topic which was not developed in the text for reasons of space and which would normally be taken up in greater detail in later courses. The material in this volume has been adapted primarily from a portion of the lectures given by H.B.G. and G.S.H. to the Chemistry 2 students at the California Institute of Technology during the academic years 1966-1967 and 1967-1968. These lectures were taped, written up by J.B.D., and distributed to the students in the form of class notes. The final manuscript was written after class-testing of the notes. Our decision to revise the Chemistry 2 notes in the form of an introductory text was made after H.B.G. and G.S.H. participated in the San Clemente Chemical Dynamics Conference, held in December 1966 under the sponsorship of the Advisory Council of College Chemistry. At San Clemente we found we were not the only group concerned over the exclusion of significant reference to chemical reactions and reactivity relationships in freshman courses. In addition to their general encouragement, which provided the necessary additional impetus, these colleagues prepared a series of papers for publication in an issue of the Journal of Chemical Education. It is a pleasure to acknowledge here the direct contribution these papers made in shaping the final form of our volume; specifically, in preparing Chapter 6, we have drawn examples from the San Clemente papers of Professors R. Marcus, A. Kuppermann and E. F. Greene, and J. Halpern. The concluding chapter of this book was developed from the lectures given by Professors E. F. Greene (dynamics in simple systems), Richard Wolfgang (atomic carbon), John D. Roberts (nuclear magnetic resonance), and F. C. Anson (electrochemical dynamics) to the students of Chemistry 2 in May 1967. These colleagues have kindly given us permission to use their material. We are grateful to Professors Ralph G. Pearson and Paul Haake, who read the entire manuscript and offered valuable criticism. It is a special pleasure to acknowledge the enormous contribution our students in Chemistry 2 made to the project. Their enthusiastic, critical attitude helped us make many improvements in the manuscript. Thanks are also due to four very special members of the staff of W. A. Benjamin, Inc., for seeing this project through with infectious vigor. Finally, and not the least, we acknowledge the role Susan Brittenham and Eileen McKoy played in preparing the final manuscript. JOSEPH B. DENCE HARRY B. GRAY GEORGE S. HAMMOND Pasadena, California January 196

    Deactivation of biacetyl triplets by cyanocobaltate(III) complexes

    Get PDF
    The rate of electronic energy transfer from biacetyl triplets to Co(CN)_(5)(X)^(n–)(X = CN^–, MeCN, pyridine, N_(3)^–, H_(2)O, or SCN^–) is strongly dependent on the energy of the first spin-allowed d–d transition of Co(CN)_(5)(X)^(n–), and (for X = CN^–, N_(3)^–, and SCN^–) the direct and sensitized photosubstitution yields are the same, implying a common reactive state

    Lifetime cost effectiveness of simvastatin in a range of risk groups and age groups derived from a randomised trial of 20,536 people

    Get PDF
    <i>Objectives</i>: To evaluate the cost effectiveness of 40 mg simvastatin daily continued for life in people of different ages with differing risks of vascular disease. Design A model developed from a randomised trial was used to estimate lifetime risks of vascular events and costs of treatment and hospital admissions in the United Kingdom. <i>Setting</i>: 69 hospitals in the UK. <i>Participants</i>: 20 536 men and women (aged 40-80) with coronary disease, other occlusive arterial disease, or diabetes. <i>Interventions</i>: 40 mg simvastatin daily versus placebo for an average of 5 years. <i>Main</i> <i>outcome</i> <i>measures</i>: Cost effectiveness of 40 mg simvastatin daily expressed as additional cost per life year gained. Major vascular event defined as non-fatal myocardial infarction or death from coronary disease, any stroke, or revascularisation procedure. Results were extrapolated to younger and older age groups at lower risk of vascular disease than were studied directly, as well as to lifetime treatment. <i>Results</i>: At the April 2005 UK price of £4.87 (€7; $9) per 28 day pack of generic 40 mg simvastatin, lifetime treatment was cost saving in most age groups and vascular disease risk groups studied directly. Gains in life expectancy and cost savings decreased with increasing age and with decreasing risk of vascular disease. People aged 40-49 with 5 year risks of major vascular events of 42% and 12% at start of treatment gained 2.49 and 1.67 life years, respectively. Treatment with statins remained cost saving or cost less than £2500 per life year gained in people as young as 35 years or as old as 85 with 5 year risks of a major vascular event as low as 5% at the start of treatment. <i>Conclusions</i>: Treatment with statins is cost effective in a wider population than is routinely treated at present

    Anisotropic valence-->core x-ray fluorescence from a [Rh(en)3][Mn(N)(CN)5]·H2O single crystal: Experimental results and density functional calculations

    Get PDF
    High resolution x-ray fluorescence spectra have been recorded for emission in different directions from a single crystal of the compound [Rh(en)3][Mn(N)(CN)5]·H2O. The spectra are interpreted by comparison with density functional theory (DFT) electronic structure calculations. The Kbeta[double-prime] line, which is strongly polarized along the Mn–N axis, can be viewed as an N(2s)-->Mn(1s) transition, and the angular dependence is understood within the dipole approximation. The so-called Kbeta2,5 region has numerous contributions but is dominated by Mn(4p) and C(2s)-->Mn(1s) transitions. Transition energy splittings are found in agreement with those of calculated occupied molecular orbitals to within 1 eV. Computed relative transition probabilities reproduce experimentally observed trends
    • …
    corecore