2,896 research outputs found

    Continuous breakdown of Purcell's scallop theorem with inertia

    Full text link
    Purcell's scallop theorem defines the type of motions of a solid body - reciprocal motions - which cannot propel the body in a viscous fluid with zero Reynolds number. For example, the flapping of a wing is reciprocal and, as was recently shown, can lead to directed motion only if its frequency Reynolds number, Re_f, is above a critical value of order one. Using elementary examples, we show the existence of oscillatory reciprocal motions which are effective for all arbitrarily small values of the frequency Reynolds number and induce net velocities scaling as (Re_f)^\alpha (alpha > 0). This demonstrates a continuous breakdown of the scallop theorem with inertia.Comment: 6 pages, 1 figur

    Experimental Investigations of Elastic Tail Propulsion at Low Reynolds Number

    Get PDF
    A simple way to generate propulsion at low Reynolds number is to periodically oscillate a passive flexible filament. Here we present a macroscopic experimental investigation of such a propulsive mechanism. A robotic swimmer is constructed and both tail shape and propulsive force are measured. Filament characteristics and the actuation are varied and resulting data are quantitatively compared with existing linear and nonlinear theories

    Extensibility enables locomotion under isotropic drag

    Full text link
    Anisotropic viscous drag is usually believed to be a requirement for the low Reynolds number locomotion of slender bodies such as flagella and cilia. Here we show that locomotion under isotropic drag is possible for extensible slender bodies. After general considerations, a two-ring swimmer and a model dinoflagellate flagellum are studied analytically to illustrate how extensibility can be exploited for self-propulsion without drag anisotropy. This new degree of freedom could be useful for some complex swimmer geometries and locomotion in complex fluid environments where drag anisotropy is weak or even absent

    Big Hole (41TV2161): Two Stratigraphically Isolated Middle Holocene Components in Travis County, Texas Volume I

    Get PDF
    During April and May 2006, an archeological team from the Cultural Resources Section of the Planning, Permitting and Licensing Practice of TRC Environmental Corporation’s (TRC) Austin office conducted geoarcheological documentation and data recovery excavations at prehistoric site 41TV2161 (CSJ: 0440-06-006). Investigations were restricted to a 70 centimeter (cm) thick target zone between ca. 220 and 290 cm below surface (bs) on the western side of site 41TV2161 – the Big Hole site in eastern Travis County, Texas. This cultural investigation was necessary under the requirements of Section 106 of the National Historic Preservation Act (NHPA), the implementing regulations of 36CRF Part 800 and the Antiquities Code of Texas (Texas Natural Resource Code, Title 9, Chapter 191 as amended) to recover a sample of the significant cultural materials prior to destruction by planned construction of State Highway 130 (SH 130). The latter by a private construction firm – Lone Star Infrastructure. This necessary data recovery was for Texas Department of Transportation (TxDOT), Environmental (ENV) Affairs Division under a Scientific Services Contract No. 577XXSA003 (Work Authorization No. 57701SA003). Over the years since the original award, multiple work authorizations between TxDOT and TRC were implemented and completed towards specific aspects of the analyses and reporting. The final analyses and report were conducted under contract 57-3XXSA004 (Work Authorization 57-311SA004). All work was under Texas Antiquities Committee Permit No. 4064 issued by the Texas Historical Commission (THC) to J. Michael Quigg. Initially, an archeological crew from Hicks & Company encountered site 41TV2161 during an intensive cultural resource inventory conducted south of Pearce Lane along the planned construction zone of SH 130 in the fall of 2005. Following the initial site discovery, archeologists expanded their investigations to the west across the SH 130 right-of-way, and completed excavation of 10 backhoe trenches, 13 shovel tests, and 11 test units at site 41TV2161. The investigations encountered at least seven buried cultural features and 1,034 artifacts, some in relatively good context. The survey and testing report to TxDOT presented their findings and recommendations (Campbell et al. 2006). The ENV Affairs Division of TxDOT and the THC reviewed the initial findings and recommendations, and determined site 41TV2161 was eligible for listing on the National Register of Historic Places and as State Antiquities Landmark as the proposed roadway development was to directly impact this important site and further excavations were required. Subsequently, TRC archeologists led by Paul Matchen (Project Archeologist) and J. Michael Quigg (Principal Investigator) initiated data recovery excavations through the mechanical-removal of between 220 and 250 cm of sediment from a 30-by-40 meter (m) block area (roughly 3,000 m3). This was conducted to allow hand-excavations to start just above the deeply buried, roughly 70 cm thick targeted zone of cultural material. Mechanical stripping by Lone Star Infrastructure staff created a large hole with an irregular bottom that varied between 220 and 260 cmbs. To locate specific areas to initiate hand-excavations within the mechanically stripped area, a geophysical survey that employed ground penetrating radar (GPR) was conducted by Tiffany Osburn then with Geo-Marine in Plano, Texas. Over a dozen electronic anomalies were detected through the GPR investigation. Following processing, data filtering, and assessment, Osburn identified and ranked the anomalies for investigation. The highest ranked anomalies (1 through 8) were thought to have the greatest potential to represent cultural features. Anomalies 1 through 6 were selected and targeted through hand-excavations of 1-by-1 m units that formed continuous excavation blocks of various sizes. Blocks were designated A, B, C, D, E, and F. The type, nature, quantity, and context of encountered cultural materials in each block led the direction and expansion of each excavation block as needed. In total, TRC archeologists hand-excavated 38.5 m3 (150 m2) from a vertically narrow target zone within this deep, multicomponent and stratified prehistoric site. Hand-excavation in the two largest Blocks, B and D (51 m2 and 62 m2 respectively), revealed two vertically separate cultural components between roughly 220 and 290 cmbs. The younger component was restricted to Block B and yielded a Bell/Andice point and point base, plus a complete Big Sandy point. These points were associated with at least eight small burned rock features, one cluster of ground stone tools, limited quantities of lithic debitage, few formal chipped and ground stone tools, and a rare vertebrate faunal assemblage. Roughly 20 to 25 cm below the Bell/Andice component in Block B and across Block D was a component identified by a single corner-notched Martindale dart point. This point was associated with a scattered burned rocks, three charcoal stained hearth features, scattered animal, bird, and fish bones, mussel shells, and less than a dozen formal chipped and ground stone tools. Both identified components contained cultural materials in good stratigraphic context with high spatial integrity. Significant, both were radiocarbon dated by multiple charcoal samples to a narrow 200-year period between 5250 and 5450 B.P. during the middle Holocene. With exception of the well-preserved faunal assemblages, perishable materials were poorly preserved in the moist silty clay loam. Charcoal lacked structure and was reduced to dark stains. Microfossils (e.g., phytoliths and starch gains) were present, although in very limited numbers and deteriorated conditions. The four much smaller Blocks (A, C, E, and F) yielded various quantities of cultural material and features, but these blocks also lacked sufficient charcoal dates and diagnostic artifacts Those artifacts and samples were left unassigned and analyzed separately from the Bell/Andice and Martindale components. The two well-defined components in Blocks B and D are the focus of this technical report. The components provide very significant data towards understanding rare and poorly understood hunter-gatherer populations during late stages of the Altithermal climate period. This final report builds upon the interim report submitted to TxDOT (Quigg et al. 2007) that briefly described the methods, excavations, preliminary findings, initial results from six feasibility studies, and proposed an initial research design for data analyses. Context and integrity of the cultural materials in the two identified components was excellent. This rare circumstance combined with detailed artifact analyses, solid documentation of their ages through multiple radiocarbon dates, and multidisciplinary approach to analyses, allowed significant insights and contributions concerning the two populations involved. Results provide a greater understanding of human behaviors during a rarely identified time in Texas Prehistory. The cultural materials and various collected samples were temporarily curated at TRC’s Austin laboratory. Following completion of analyses and acceptance of this final report, the artifacts, paper records, photographs, and electronic database were permanently curated at the Center for Archaeological Studies (CAS) at Texas State University in San Marcos

    Positional differences in reactive hyperemia provide insight into initial phase of exercise hyperemia.

    Get PDF
    Studies have reported a greater blood flow response to muscle contractions when the limb is below the heart compared with above the heart, and these results have been interpreted as evidence for a skeletal muscle pump contribution to exercise hyperemia. If limb position affects the blood flow response to other vascular challenges such as reactive hyperemia, this interpretation may not be correct. We hypothesized that the magnitude of reactive hyperemia would be greater with the limb below the heart. Brachial artery blood flow (Doppler ultrasound) and blood pressure (finger-cuff plethysmography) were measured in 10 healthy volunteers. Subjects lay supine with one arm supported in two different positions: above or below the heart. Reactive hyperemia was produced by occlusion of arterial inflow for varying durations: 0.5 min, 1 min, 2 min, or 5 min in randomized order. Peak increases in blood flow were 77 ± 11, 178 ± 24, 291 ± 25, and 398 ± 33 ml/min above the heart and 96 ± 19, 279 ± 62, 550 ± 60, and 711 ± 69 ml/min below the heart (P \u3c 0.05). Thus a standard stimulus (vascular occlusion) elicited different responses depending on limb position. To determine whether these differences were due to mechanisms intrinsic to the arterial wall, a second set of experiments was performed in which acute intraluminal pressure reduction for 0.5 min, 1 min, 2 min, or 5 min was performed in isolated rat soleus feed arteries (n = 12). The magnitude of dilation upon pressure restoration was greater when acute pressure reduction occurred from 85 mmHg (mimicking pressure in the arm below the heart; 28.3 ± 7.9, 37.5 ± 5.9, 55.1 ± 9.9, and 68.9 ± 8.6% dilation) than from 48 mmHg (mimicking pressure in the arm above the heart; 20.8 ± 4.8, 22.6 ± 4.4, 31.2 ± 5.8, and 49.2 ± 7.1% dilation). These data support the hypothesis that arm position differences in reactive hyperemia are at least partially mediated by mechanisms intrinsic to the arterial wall. Overall, these results suggest the need to reevaluate studies employing positional changes to examine muscle pump influences on exercise hyperemia

    Manganese Oxide Thin Films Prepared by Nonaqueous Sol-Gel Processing: Preferential Formation of Birnessite

    Get PDF
    High quality manganese oxide thin films with smooth surfaces and even thicknesses have been prepared with a nonaqueous sol–gel process involving reduction of tetraethylammonium permanganate in methanol. Spin-coated films have been cast onto soft glass, quartz, and Ni foil substrates, with two coats being applied for optimum crystallization. The addition of alkali metal cations as dopants results in exclusive formation of the layered birnessite phase. By contrast, analogous reactions in bulk sol–gel reactions yield birnessite, tunneled, and spinel phases depending on the dopant cation. XRD patterns confirm the formation of well-crystallized birnessite. SEM images of Li-, Na-, and K–birnessite reveal extremely smooth films having uniform thickness of less than 0.5 μm. Thin films of Rb– and Cs–birnessite have more fractured and uneven surfaces as a result of some precipitation during the sol–gel transformation. All films consist of densely packed particles of about 0.1 μm. When tetrabutylammonium permanganate is used instead of tetraethylammonium permanganate, the sol–gel reaction yields amorphous manganese oxide as the result of diluted Mn sites in the xerogel film. Bilayer films have been prepared by casting an overcoat of K–birnessite onto an Na–birnessite film. However, Auger depth profiling indicates considerable mixing between the adjacent layers

    Further evidence for the planet around 51 Pegasi

    Full text link
    The discovery of the planet around the solar-type star 51 Pegasi marked a watershed in the search for extrasolar planets. Since then seven other solar-type stars have been discovered, of which several have surprisingly short orbital periods, like the planet around 51 Peg. These planets were detected using the indirect technique of measuring variations in the Doppler shifts of lines in the spectra of the primary stars. But it is possible that oscillations of the stars themselves (or other effects) could mimic the signature of the planets, particularly around the short-period planets. The apparent lack of spectral and brightness variations, however, led to widespread acceptance that there is a planet around 51 Peg. This conclusion was challenged by the observation of systematic variations in the line profile shapes of 51 Peg, which suggested stellar oscillations. If these observations are correct, then there is no need to invoke a planet around 51 Peg to explain the data. Here we report observations of 51 Peg at a much higher spectral resolution than those in ref.9, in which we find no evidence for systematic changes in the line shapes. The data are most consistent with a planetary companion to 51 Peg.Comment: LaTeX, 6 pages, 2 figures. To appear in 8 January 1998 issue of Natur
    • …
    corecore