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Experimental I nvestigations of Elastic Tail Propulsion at L ow Reynolds Number

Tony S. Yu, Eric Lauga, and A. E. Hosoi
Hatsopoulos Microfluids Laboratory, Department of MechahiEngineering,
Massachusetts Institute of Technology, Cambridge, Méssaits 02139

A simple way to generate propulsion at low Reynolds numbéo jgeriodically oscillate a passive flexible
filament. Here we present a macroscopic experimental iigegiin of such a propulsive mechanism. A robotic
swimmer is constructed and both tail shape and propulsieefare measured. Filament characteristics and the
actuation are varied and resulting data are quantitativ@hypared with existing linear and nonlinear theories.
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At small scales, the physics of swimming is fundamentally (@  Video Strain
different than at mesoscopic scales as the dominance of vis- Camera %‘uges
cous forces over inertial forces leads to equations of motio m
that are time-reversible. In his famous lectukée at Low \ gzg::ever

Reynolds Number®urcell [1] described three simple swim-
ming mechanisms that are not time-reversible and hence lead
to a net translation in the absence of inertial effects: I#) t
“corkscrew” [2], in which a rigid helical filament is rotatéal

a viscous liquid, analogous to the swimming mechanism of
many bacteria [3, 4]; (2) the “three-link swimmer,” the sim-
plest rigid-linked mechanism that swims without inertig; [5
and (3) the “flexible oar” [6-8], in which a flexible tail is akc
lated in a viscous fluid, generating traveling waves aloreg th
filament that produce a propulsive force (see also [9-11je T
purpose of this letter is to experimentally investigateftae-

20cm

ible oar design and to compare the resulting force data with Scotch Yoke & Leve
existing theories. (b)

Swimming at micro-scales has long been the realm of bac- Rotor—~, -
teria and other microorganisms [4, 12] but contemporary ad- Follower Pin—— N \,
vances have allowed engineers to catch up with nature. Drey- Lever >/|\}|
fus et al. have recently created the first manmade micro- N /- Motor
swimmer [13], in which a chain of paramagnetic beads prop- Pivot /‘u )
agates a bending wave along the chain driven by an exter- _ Rotor Pin
nal magnetic field. Although construction of this remarleabl /Ti‘/"/,// Follower

+

swimmer was at least partially motivated by existing flesibl
tail theories [6—11], the mechanism is not a truly passive fle

;ﬁ(l—fmt::? S Al\ni::noagéoé?(gzzrireGn?gzlrlfodrrilgg%;h\?v:Sggtmglef forces. (b) Scotch yoke and Ieyer mechanism. The rqtor ahd fo
) . L ) Ic1wer form the Scotch yoke, which converts the motor’s iiotainto

measured the Sha_pe ch_anges of a passive actin filament, OSGranslational oscillation. This oscillation is then certed to an an-
lated at one end via optical tweezers [7]. The shapes redordeyjar oscillation by a lever. The angular oscillation is apgimately
in these trials match elastohydrodynamic theory well h@vev sjnusoidal for a constant motor rotation.
the resulting propulsive force — a key parameter in desgynin
microscopic swimmers —was not measured. Here we propose
the first experimental determination of this force and showwith an amplitudezo and a frequency. The voltage across
that the linear theory due to Wiggins and Goldstein [6] quanthe motor governed the oscillation frequency (betwgemd
titatively predicts both the shape of the elastic filamenttie 0.4 rad/s), and the length of the lever controlled the ampli-
resulting propulsive, viscous forces. tude of oscillation ((.814 rad and0.435rad). At the end of

In order to experimentally quantify the propulsive charac-the lever, stainless steel wires of lengthcm to 30 cm acted
teristics of the flexible oar design, we built a robotic swierm  as elastic tails. Two different tail diameters were usedhése
dubbed “RoboChlam” (after the alg@hlamydomongsasis  experimentsD = 0.5 mm and 0.61 mm resulting in bending
displayed in Fig. 1(a). The RoboChlam body was approxi-stiffnesses 06.1 x 10~% and 1.3 x 1072 N - m?, respectively.
mately 8 cm in length and housed a geared DC motor. The RoboChlam was immersed in high viscosit/1g Pa - s)
motor’s rotation was converted into an angular oscillatisn  silicone oil to approach the low Reynolds numbei8( to
ing a Scotch yoke and a lever (see Fig. 1b). Consequently,0~2) achieved by microorganisms. Tail shapes generated by
the tail was angularly-actuated: the base of the filament waRoboChlam were imaged with a video camera at 30 frames
fixed at the origin and the base-angle was varied sinusgidallper second and 72@ 480 pixels per frame. A cantilever

FIG. 1: (a) Experimental setup to measure tail shapes arplizige



beam anchored the device, and a pair of strain gauges on ophere the subscrigtdenotes a derivative in time,is the po-
posite sides of the beam measured beam deflection. Strasition vector of a point along the tail, addandt are the unit
gauge readings were converted into force measurements; rrmal and tangent to the filament, respectively. We conside
no-load voltage reading was taken at the beginning and enid this letter a planar actuation of the rod, so thas defined

of each trial to measure the thermal drift in the strain gaugewithout ambiguities to remain in this plane.

and the accompanying circuitry. Although force data were ob

tained through measured deflections of the cantilever beam, — linear - - nonlinear ¢ experiment

this deflection was small — less than half a centimeter at the

T T T T v T =
beam’s tip — thus, RoboChlam’s position was approximately 005 T (a) 0
fixed. Experiments showed that an angular oscillationistart
with the tail at rest reached steady-state motion afterappr 0
imately two periods of oscillation; the time scale assauat
with this decay of transients corresponds well with the tran
sient time scales observed in our nonlinear simulations. Fi —0.05
nally, videos of the tail shapes were digitized for comparis _ L b
to simulations and theoretical predictions. Experimedsdh E 0057F (b) i
are summarized in Figs. 2 and 3. =
0 q
0.8 : . — - — .
| — linear _
= = nonlinear —0.05 L b
% 06 F + L=18cm A b 0.0277 (c) _]
g ¢ L=1som o _ 0 MEEEIIIIL, LoiE e
5 o L=20cm ¥y —0.02 —_—
S o4 = fSie 0 005 01 015 0.2
= A
OE: z [m]
T
é 0.2 | FIG. 3: Comparison between experiment, linear and nonlitiea
ories of tail shapes. Snapshots are shown at four pointsiytble
for one tail withL = 20 cm, D = 0.5 mm, ao = 0.435rad, at three
0 different oscillation frequencies: (&) = 0.50rad/s (£ = 1.73),
0 1 9 3 4 5 (b) w = 1.31rad/s (£ = 2.20), (c)w = 5.24rad/s (£ = 3.11).

Nondimensional Lengthf

FIG. 2: Force measurements for various tail lengfhsOscillation

frequency was varied to span a range of dimensionless length Yy
where the dimensionless length and force are defined in iegsat

(7) and (9) respectively. Thesymbols correspond t® = 0.61 mm ,
andao = 0.814 rad. All other data correspond t® = 0.5 mm and

ao = 0.435rad. There are no free parameters in the comparison
between experiment and theory.

To perform a quantitative comparison of experimental force g
and shape data with theoretical predictions, we first briefly | _ )’\/
view a few key results of the theory of actuated elastic fila- Tail
ments in Stokes flow [7]. Consider an elastic, cylindrical ro
whose base is attached to a fixed body (see Fig. 4). In a lo!G. 4: Schematic of the elastic tail with the origin definedtze
Reynolds number regime, the inertia of the fluid can be nebase of the tail.
glected and the fluid dynamics is well-described by Stokes
equations. If the length of the tail,, is much greater thanits  The elastic forces on the rod are derived from an energy
diameter,D, the hydrodynamics can be further simplified by functional which includes bending energy and an inextensi-
using slender body theory, the approximation of which is re-bility constraint
sistive force theory [12, 14, 15]. Thus, the drag forces @n th
tail are linearly related to the velocity through the tragrse c_ Lra s A q
and axial drag coefficients,, and¢|, respectively, and the _/0 ST grsT| ds
drag force per unit length of the rod can be expressed as

=Y

)

N whereA is the bending stiffness, is the local curvature of the
fq = —[{1nn 4§ tt] - ry (1) tailandA is the Lagrange multiplier enforcing inextensibility.
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Using calculus of variation we obtain the elastic force pgt u integrated along the length of the tail to yield the propudsi
length,f. = —0&/ér as given by [16, 17] force

f€ - _(Az/]SSS N ¢87)ﬁ + (Az/]ssws + Ts)f: (3) <F> ~ _Aél_ — 5” <ymyzzz - lymm2>ac:0 (8)

&1 2
where the subscript denotes a derivative in the coordinate : . o
along the tail axisy) is the local angle (see Fig. 4), anctan where(...) denote_s averaging over one period of oscillation.
also be interpreted as the local tension in the tail. Note that Eg. (8) differs from the one presented in [6, 7] by a

Local mechanical equilibrium along the rod, leads to a paif@Ctor (§.L = &)/€.; this disparity arises from a proper inte-

of coupled, nonlinear partial differential equations oftran, ~ gration of the drag force on the filament [8].
as shown in [16]: In order to obtain results valid beyond the small-slope ap-

proximation, our numerical solutions to the full nonlinegs-

1 tem (Egs. 4 and 5) were employed and the propulsive force
vy = N (Apssss = Tss = T51)s)  (4) was found by numerical integration of the local drag force
1 along the length of the tail. A dimensionless forEevas de-
+§— (A ss + Tot)s) fined by substituting: = £,%, y = aol.¥, andt = 2wt/w
I into Eqg. (8), such that
S L L e R TRC I
e & T ” (F) = ao® 6.2 (€L = &Iw|(F). 9)

Numerical solutions to these equations were found using &ince the distance from the tail to the nearest wall was on the
Newton-Raphson iteration and are plotted along with expererder of the tail's length, drag coefficients corrected failw
imental data in Figs. 2 and 3. effects as in [18] were used in simulations and for nondimen-
For small deflectionsi¢. assuming) < 1 such that) ~  sionalizing the force data. These wall corrections havenbee
yz), Wiggins and Goldstein [6] have shown that the motion ofshown to match well with experimental results [19]; for sim-
the tail can be further simplified and is described by a linearplicity, the effect of only a single side-wall was considire

“hyperdiffusion” equation: These equations produced a drag difference of approxiynatel
§1 — & = 3.35Pa-s —aboutd0% greater than the drag dif-
yr ~ — A y (6) ference without wall effects.
€70 The results of our investigations are summarized in Figs. 2,

_ Y ) - 3 and 5. We first display in Fig. 2 the propulsive force gener-
where subscriptst and ¢ denote derivatives in position ated for a range of dimensionless tail lengtfs All parame-
and time, respectively. For the case of harmonic angularers of the experiment were known or measured, and no fitting
actuation, we apply the boundary condition= aosin(wt)  of data was necessary. We obtain excellent agreement of the
at the base. The nondimensionalization of Eq. (6) is obtainepropulsive force with the theoretical (linear model, Ecai
by substitutingr = L, y = aogLy, andt = t/winto Eq. (6),  numerical values (nonlinear model, Egs. 4 and 5). The force
leading tog; ~ —((./L)*Jzzz: Where,l, = (A/wé0)'*,  data from the RoboChlam experiments show a maximum di-
is the characteristic penetration length of the elastobygh  mensionless force af ~ 2.1, in agreement with prediction
namic problem; solutions to Eq. (6) decay exponentially infrom the theory. Note that our data was nondimensionalized
space over this typical length scale. The time-evolutiothef  \yith the drag differences, — ¢ (see Eq. 9), instead of the
tail shapes is_ then_only a function of the angular amplitudetransverse drag, , which was used in [6, 7]. The drag differ-
ao, and the dimensionless length, ence orginated in Eq. (8), and it represents the corrednscal

14 as a tai_l with isotropic drags( = &) should prod_uce zero

L=ty =1 <ﬂ) @ propulsive force [5, 8]. We note also that the maximum value

“ A ’ of £ that could be tested was limited by the motor’s rotation
rate and the length of tail that would fit in the experimental
This dimensionless length is the key parameter in the pnoble apparatus.
and represents the “floppiness” of the tail and hence the over In comparing the data to linear elastohydrodynamic theo-
all effectiveness of the swimmer. In particular, theorydices  ries, there are three primary sources of error: wall effects
an optimal dimensionless tail length as both short, stif§ta thermal drift in the experiment, and the neglected nonlinea
and long, flexible tails produce negligible net translatidhe ities in the theory. The error bars in Fig. 2 arise from uncer-
first is ineffective owing to the scallop theorem and the selco tainty in the no-load voltage of the strain gauge measurésnen
owing to the excessive drag on the long passive filament. At lower oscillation frequencies, the sample time of theaxp
For a tail that is periodically oscillated, Eq. (6) can beiment increased, leading to noticeable thermal drift imistr
solved analytically [6, 7]. At the base of the filament, the gauge (force) measurements and thus, larger drift errdhéor
reaction forces and torque must balance the drag forceg aloreft-most points of a given data-set. In addition, the tiiled
the tail. The opposite end of the tail is force and torque-fre longest tail 0 cm, A) was only a few centimeters from the
such that)s = 0,vss = 0,andr = 0 ats = L. For smallde- back wall and thus, this wall had a non-negligible effect on
flections, thex-component of local drag force, Eq. (1), can be the drag of the longest tail resulting in an increased thagst
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expected. Recall that our wall-corrected drag coefficientg  lengths ()2 = 1.73, (b) £ = 2.20, and (c)£ = 3.11. These
account for a single wall — the side wall rather than the bacldimensionless lengths span the region near the maximum di-
wall — of the tank, as is appropriate for all but the longe#sta mensionless force. The tail shapes from experiment matched
in our experiments. It is interesting to note that, in these e well with those from the linear and nonlinear simulationg] a
periments, nonlinear effects are completely negligiblathee  only slight differences between the three tails were olesry

to the other two sources of error even for long tails and largdails whose dimensionless length was small (Fig. 3a) moved

actuation angles.

stiffly, while those with large dimensionless lengths (FHg)
were flexible, as predicted by theory. The difference betwee

0.006 " - . ' . ' the different tail shapes (theory, experiments, simutefjas
RN — LN1  -- LN2 | quantified in Fig. 5. The measured errors are observed to be
o ~ A = LE1 0 LE2 small. The fact that the data match the linear simulation bet
§ 0.004 - . A N-E1 A N-E 29 ter than the nonlinear solution is fortuitous and merelyefl
kg the fact that resistive force theory is only an approximatb
a the equation of hydrodynamics [12].
T 0002 |o .
" | &D‘fﬂ‘ A 4 In summary, we have presented an experimental investi-
W gation of Purcell’s flexible oar swimmer. Measurements of
0 . . . . : propulsive forces and time-varying shapes are in agreement
1.5 2 2.5 3 3.5 with the results of resistive-force theory. Remarkably th

Nondimensional Length{

FIG. 5: Normalized, time-averaged differences betweegalir(L),
nonlinear (N), and experimental (E) tail shapes. The difiee is

calculated as thé-norm of the vertical-distance vector between two

tails divided by the tail length and the number of points gltre tail.
Two data sets are shown: ()= 20cm, D = 0.5 mm, andag =
0.435rad; (2) L = 18 cm, D = 0.63 mm, andao = 0.814 rad.

small-slope model of Wiggins and Goldstein [6] appears to
remain quantitatively correct well beyond its regime ofcstr
validity.

Our future work will investigate the efficiency of this
propulsive mechanism when embedded in a synthetic free-
swimmmer — that is, an elastic flament attached to a body
which translates and rotates with the forces and torquergene
ated by the propulsive tail. Preliminary free swimming ex-

In Fig. 3 we plot the tail shapes from experiments alongperiments show that rotation of the swimmer body signifi-
with simulationed shapes from both the linear and nonlineacantly changes the shapes of the tail, modifying the force
theories. The plot shows three tails from a single data seturve shown in Fig. 2, and appreciably impacting the dynam-

(constantL, D, andayg, but varyingw) with dimensionless

ics of the swimmer.
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