155 research outputs found

    The global atmospheric energy transport analysed by a wavelength-based scale separation

    Get PDF
    The atmosphere transports energy polewards by circulation cells and eddies. To the present day, there has been a knowledge gap regarding the preferred spatial scales and physical mechanisms of eddy energy transport. To fill the gap, we separate the meridional atmospheric energy transport in the ERA5 reanalysis by spatial scales and into quasi-stationary and transient flow patterns and latent and dry components. Baroclinic instability is the major instability mechanism in the transient synoptic scales and is responsible for forming cyclones, anticyclones, and small-scale Rossby waves. At the planetary scales, circulation patterns are often induced by other mechanisms such as flow interaction with orography and land–sea heating contrasts. However, a separation between circulation patterns at the synoptic and planetary scales has yet to be established. We find that both baroclinically induced and transient energy transport is predominantly associated with eddies at wavelengths between 2000 and 8000 km. The maxima in both types of transport occur at wavelengths around 5000 km, in good agreement with linear baroclinic theory. Since these results are independent of latitude, we adapt the scale separation of the energy transport to be based on the wavelength instead of the previously used wavenumber. We define the synoptic transport by the wavelength band between 2000 and 8000 km. We analyse the annual and seasonal mean in the energy transport components and their inter-annual variability. The scale-separated transport components are fairly similar in both hemispheres. Transport by synoptic waves is the largest contributor to extra-tropical energy and moisture transport, mainly of a transient character, and is influenced little by seasonality. In contrast, transport by planetary waves depends highly on the season and has two distinct characteristics. (1) In the extra-tropical winter, planetary waves are important due to a large transport of dry energy. This planetary transport features the largest inter-annual variability of all components and is mainly quasi-stationary in the Northern Hemisphere but transient in its southern counterpart. (2) In the sub-tropical summer, quasi-stationary planetary waves are the most important transport component, mainly due to moisture transport, presumably associated with monsoons. In contrast to transport by planetary and synoptic waves, only a negligible amount of energy is transported by mesoscale eddies (&lt; 2000 km).</p

    Melt onset over Arctic sea ice controlled by atmospheric moisture transport

    Get PDF
    The timing of melt onset affects the surface energy uptake throughout the melt season. Yet the processes triggering melt and causing its large interannual variability are not well understood. Here we show that melt onset over Arctic sea ice is initiated by positive anomalies of water vapor, clouds, and air temperatures that increase the downwelling longwave radiation (LWD) to the surface. The earlier melt onset occurs; the stronger are these anomalies. Downwelling shortwave radiation (SWD) is smaller than usual at melt onset, indicating that melt is not triggered by SWD. When melt occurs early, an anomalously opaque atmosphere with positive LWD anomalies preconditions the surface for weeks preceding melt. In contrast, when melt begins late, clearer than usual conditions are evident prior to melt. Hence, atmospheric processes are imperative for melt onset. It is also found that spring LWD increased during recent decades, consistent with trends toward an earlier melt onset. ©2016. American Geophysical Union. All Rights Reserved

    Estimation of Parameters in DNA Mixture Analysis

    Full text link
    In Cowell et al. (2007), a Bayesian network for analysis of mixed traces of DNA was presented using gamma distributions for modelling peak sizes in the electropherogram. It was demonstrated that the analysis was sensitive to the choice of a variance factor and hence this should be adapted to any new trace analysed. In the present paper we discuss how the variance parameter can be estimated by maximum likelihood to achieve this. The unknown proportions of DNA from each contributor can similarly be estimated by maximum likelihood jointly with the variance parameter. Furthermore we discuss how to incorporate prior knowledge about the parameters in a Bayesian analysis. The proposed estimation methods are illustrated through a few examples of applications for calculating evidential value in casework and for mixture deconvolution

    The Depsipeptide Romidepsin Reverses HIV-1 Latency In Vivo.

    Get PDF
    UNLABELLED: Pharmacologically-induced activation of replication competent proviruses from latency in the presence of antiretroviral treatment (ART) has been proposed as a step towards curing HIV-1 infection. However, until now, approaches to reverse HIV-1 latency in humans have yielded mixed results. Here, we report a proof-of-concept phase Ib/IIa trial where 6 aviremic HIV-1 infected adults received intravenous 5 mg/m2 romidepsin (Celgene) once weekly for 3 weeks while maintaining ART. Lymphocyte histone H3 acetylation, a cellular measure of the pharmacodynamic response to romidepsin, increased rapidly (maximum fold range: 3.7-7.7 relative to baseline) within the first hours following each romidepsin administration. Concurrently, HIV-1 transcription quantified as copies of cell-associated un-spliced HIV-1 RNA increased significantly from baseline during treatment (range of fold-increase: 2.4-5.0; p = 0.03). Plasma HIV-1 RNA increased from &lt;20 copies/mL at baseline to readily quantifiable levels at multiple post-infusion time-points in 5 of 6 patients (range 46-103 copies/mL following the second infusion, p = 0.04). Importantly, romidepsin did not decrease the number of HIV-specific T cells or inhibit T cell cytokine production. Adverse events (all grade 1-2) were consistent with the known side effects of romidepsin. In conclusion, romidepsin safely induced HIV-1 transcription resulting in plasma HIV-1 RNA that was readily detected with standard commercial assays demonstrating that significant reversal of HIV-1 latency in vivo is possible without blunting T cell-mediated immune responses. These finding have major implications for future trials aiming to eradicate the HIV-1 reservoir. TRIAL REGISTRATION: clinicaltrials.gov NTC02092116

    Event structures for the reversible early internal pi-calculus

    Get PDF
    The pi-calculus is a widely used process calculus, which models com-munications between processes and allows the passing of communication links.Various operational semantics of the pi-calculus have been proposed, which canbe classified according to whether transitions are unlabelled (so-called reductions)or labelled. With labelled transitions, we can distinguish early and late semantics.The early version allows a process to receive names it already knows from the en-vironment, while the late semantics and reduction semantics do not. All existingreversible versions of the pi-calculus use reduction or late semantics, despite theearly semantics of the (forward-only) pi-calculus being more widely used than thelate. We define piIH, the first reversible early pi-calculus, and give it a denotationalsemantics in terms of reversible bundle event structures. The new calculus is a re-versible form of the internal pi-calculus, which is a subset of the pi-calculus whereevery link sent by an output is private, yielding greater symmetry between inputsand outputs

    Clinical, Pathologic, and Functional Outcomes After Nephron-Sparing Surgery in Patients with a Solitary Kidney: A Multicenter Experience

    Full text link
    Abstract Background and Purpose: Surgical management of a renal neoplasm in a solitary kidney is a balance between oncologic control and preservation of renal function. We analyzed patients with a renal mass in a solitary kidney undergoing nephron-sparing procedures to determine perioperative, oncologic, and renal functional outcomes. Patients and Methods: A multicenter study was performed from 12 institutions. All patients with a functional or anatomic solitary kidney who underwent nephron-sparing surgery for one or more renal masses were included. Tumor size, complications, and recurrence rates were recorded. Renal function was assessed with serum creatinine level and estimated glomerular filtration rate. Results: Ninety-eight patients underwent 105 ablations, and 100 patients underwent partial nephrectomy (PN). Preoperative estimated glomerular filtration rate (eGFR) was similar between the groups. Tumors managed with PN were significantly larger than those managed with ablation (P<0.001). Ablations were associated with a lower overall complication rate (9.5% vs 24%, P=0.01) and higher local recurrence rate (6.7% vs 3%, P=0.04). Eighty-four patients had a preoperative eGFR ≥60?mL/min/1.73?m2. Among these patients, 19 (23%) fell below this threshold after 3 months and 15 (18%) at 12 months. Postoperatively, there was no significant difference in eGFR between the groups. Conclusions: Extirpation and ablation are both reasonable options for treatment. Ablation is more minimally invasive, albeit with higher recurrence rates compared with PN. Postoperative renal function is similar in both groups and is not affected by surgical approach.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/98449/1/end%2E2012%2E0114.pd

    Dietary supplementation of cystinotic mice by lysine inhibits the megalin pathway and decreases kidney cystine content.

    Full text link
    peer reviewedMegalin/LRP2 is a major receptor supporting apical endocytosis in kidney proximal tubular cells. We have previously reported that kidney-specific perinatal ablation of the megalin gene in cystinotic mice, a model of nephropathic cystinosis, essentially blocks renal cystine accumulation and partially preserves kidney tissue integrity. Here, we examined whether inhibition of the megalin pathway in adult cystinotic mice by dietary supplementation (5x-fold vs control regular diet) with the dibasic amino-acids (dAAs), lysine or arginine, both of which are used to treat patients with other rare metabolic disorders, could also decrease renal cystine accumulation and protect cystinotic kidneys. Using surface plasmon resonance, we first showed that both dAAs compete for protein ligand binding to immobilized megalin in a concentration-dependent manner, with identical inhibition curves by L- and D-stereoisomers. In cystinotic mice, 2-month diets with 5x-L-lysine and 5x-L-arginine were overall well tolerated, while 5x-D-lysine induced strong polyuria but no weight loss. All diets induced a marked increase of dAA urinary excretion, most prominent under 5x-D-lysine, without sign of kidney insufficiency. Renal cystine accumulation was slowed down approx. twofold by L-dAAs, and totally suppressed by D-lysine. We conclude that prolonged dietary manipulation of the megalin pathway in kidneys is feasible, tolerable and can be effective in vivo

    The Atmosphere above Ny-Ålesund – Climate and global warming, ozone and surface UV radiation

    Get PDF
    The Arctic region is considered to be most sensitive to climate change, with warming in the Arctic occurring considerably faster than the global average due to several positive feedback mechanisms contributing to the “Arctic amplification”. Also the maritime and mountainous climate of Svalbard has undergone changes during the last decades. Here, the focus is set on the current atmospheric boundary conditions for the marine ecosystem in the Kongsfjorden area, discussed in the frame of long-term climatic observations in the larger regional and hemispheric context. During the last century, a general warming is found with temperature increases and precipitation changes varying in strength. During the last decades, a strong seasonality of the warming is observed in the Kongsfjorden area, with the strongest temperature increase occurring during the winter season. The winter warming is related to observed changes in the net longwave radiation. Moreover, changes in the net shortwave are observed during the summer period, attributed to the decrease in reflected radiation caused by the retreating snow cover. Another related aspect of radiation is the intensity of solar ultra-violet radiation that is closely coupled to the abundance of ozone in the column of air overhead. The long term evolution of ozone losses in the Arctic and their connection to climate change are discussed

    Surface Energy Budgets of Arctic Tundra During Growing Season

    Full text link
    This study analyzed summer observations of diurnal and seasonal surface energy budgets across several monitoring sites within the Arctic tundra underlain by permafrost. In these areas, latent and sensible heat fluxes have comparable magnitudes, and ground heat flux enters the subsurface during short summer intervals of the growing period, leading to seasonal thaw. The maximum entropy production (MEP) model was tested as an input and parameter parsimonious model of surface heat fluxes for the simulation of energy budgets of these permafrost‐underlain environments. Using net radiation, surface temperature, and a single parameter characterizing the thermal inertia of the heat exchanging surface, the MEP model estimates latent, sensible, and ground heat fluxes that agree closely with observations at five sites for which detailed flux data are available. The MEP potential evapotranspiration model reproduces estimates of the Penman‐Monteith potential evapotranspiration model that requires at least five input meteorological variables (net radiation, ground heat flux, air temperature, air humidity, and wind speed) and empirical parameters of surface resistance. The potential and challenges of MEP model application in sparsely monitored areas of the Arctic are discussed, highlighting the need for accurate measurements and constraints of ground heat flux.Plain Language SummaryGrowing season latent and sensible heat fluxes are nearly equal over the Arctic permafrost tundra regions. Persistent ground heat flux into the subsurface layer leads to seasonal thaw of the top permafrost layer. The maximum energy production model accurately estimates the latent, sensible, and ground heat flux of the surface energy budget of the Arctic permafrost regions.Key PointThe MEP model is parsimonious and well suited to modeling surface energy budget in data‐sparse permafrost environmentsPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/150560/1/jgrd55584.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/150560/2/jgrd55584_am.pd

    Acute-Phase-HDL Remodeling by Heparan Sulfate Generates a Novel Lipoprotein with Exceptional Cholesterol Efflux Activity from Macrophages

    Get PDF
    During episodes of acute-inflammation high-density lipoproteins (HDL), the carrier of so-called good cholesterol, experiences a major change in apolipoprotein composition and becomes acute-phase HDL (AP-HDL). This altered, but physiologically important, HDL has an increased binding affinity for macrophages that is dependent on cell surface heparan sulfate (HS). While exploring the properties of AP-HDL∶HS interactions we discovered that HS caused significant remodeling of AP-HDL. The physical nature of this change in structure and its potential importance for cholesterol efflux from cholesterol-loaded macrophages was therefore investigated. In the presence of heparin, or HS, AP-HDL solutions at pH 5.2 became turbid within minutes. Analysis by centrifugation and gel electrophoresis indicated that AP-HDL was remodeled generating novel lipid poor particles composed only of apolipoprotein AI, which we designate β2. This remodeling is dependent on pH, glycosaminoglycan type, is promoted by Ca2+ and is independent of protease or lipase activity. Compared to HDL and AP-HDL, remodeled AP-HDL (S-HDL-SAA), containing β2 particles, demonstrated a 3-fold greater cholesterol efflux activity from cholesterol-loaded macrophage. Because the identified conditions causing this change in AP-HDL structure and function can exist physiologically at the surface of the macrophage, or in its endosomes, we postulate that AP-HDL contains latent functionalities that become apparent and active when it associates with macrophage cell surface/endosomal HS. In this way initial steps in the reverse cholesterol transport pathway are focused at sites of injury to mobilize cholesterol from macrophages that are actively participating in the phagocytosis of damaged membranes rich in cholesterol. The mechanism may also be of relevance to aspects of atherogenesis
    corecore