17 research outputs found

    Hypervirulent Clostridium difficile Strains in Hospitalized Patients, Canada1

    Get PDF
    To determine the incidence rate of infections with North American pulsed-field types 7 and 8 (NAP7/NAP8) strains of Clostrodium difficile, ribotype 078, and toxinotype V strains, we examined data collected for the Canadian Nosocomial Infections Surveillance Program (CNISP) CDI surveillance project during 2004–2008. Incidence of human infections increased from 0.5% in 2004/2005 to 1.6% in 2008

    A cluster randomised trial testing an intervention to improve parents' recognition of their child's weight status: study protocol Health behavior, health promotion and society

    Get PDF
    Background: Parents typically do not recognise their child's weight status accurately according to clinical criteria, and thus may not take appropriate action if their child is overweight. We developed a novel visual intervention designed to improve parental perceptions of child weight status according to clinical criteria for children aged 4-5 and 10-11 years. The Map Me intervention comprises age- and sex-specific body image scales of known body mass index and supporting information about the health risks of childhood overweight. Design: This cluster randomised trial will test the effectiveness of the Map Me intervention. Primary schools will be randomised to: paper-based Map Me; web-based Map Me; no information (control). Parents of reception (4-5 years) and year 6 (10-11 years) children attending the schools will be recruited. The study will work with the National Child Measurement Programme which measures the height and weight of these year groups and provides feedback to parents about their child's weight status. Before receiving the feedback, parents will complete a questionnaire which includes assessment of their perception of their child's weight status and knowledge of the health consequences of childhood overweight. The control group will provide pre-intervention data with assessment soon after recruitment; the intervention groups will provide post-intervention data after access to Map Me for one month. The study will subsequently obtain the child height and weight measurements from the National Child Measurement Programme. Families will be followed-up by the study team at 12 months. The primary outcome is any difference in accuracy in parental perception of child weight status between pre-intervention and post-intervention at one month. The secondary outcomes include differences in parent knowledge, intention to change lifestyle behaviours and/or seek advice or support, perceived control, action planning, coping planning, and child weight status at 12 month follow-up. Discussion: The Map Me tool has potential to make a positive impact on children's health at a population level by introducing it into current intervention programmes to improve accuracy of parental perception of child's weight status. This trial will inform the action of researchers, educators, health professionals and policy makers. Trial registration: Current Controlled Trials ISRCTN91136472. Registered 3 May 2013

    Stroke genetics informs drug discovery and risk prediction across ancestries

    Get PDF
    Previous genome-wide association studies (GWASs) of stroke — the second leading cause of death worldwide — were conducted predominantly in populations of European ancestry1,2. Here, in cross-ancestry GWAS meta-analyses of 110,182 patients who have had a stroke (five ancestries, 33% non-European) and 1,503,898 control individuals, we identify association signals for stroke and its subtypes at 89 (61 new) independent loci: 60 in primary inverse-variance-weighted analyses and 29 in secondary meta-regression and multitrait analyses. On the basis of internal cross-ancestry validation and an independent follow-up in 89,084 additional cases of stroke (30% non-European) and 1,013,843 control individuals, 87% of the primary stroke risk loci and 60% of the secondary stroke risk loci were replicated (P < 0.05). Effect sizes were highly correlated across ancestries. Cross-ancestry fine-mapping, in silico mutagenesis analysis3, and transcriptome-wide and proteome-wide association analyses revealed putative causal genes (such as SH3PXD2A and FURIN) and variants (such as at GRK5 and NOS3). Using a three-pronged approach4, we provide genetic evidence for putative drug effects, highlighting F11, KLKB1, PROC, GP1BA, LAMC2 and VCAM1 as possible targets, with drugs already under investigation for stroke for F11 and PROC. A polygenic score integrating cross-ancestry and ancestry-specific stroke GWASs with vascular-risk factor GWASs (integrative polygenic scores) strongly predicted ischaemic stroke in populations of European, East Asian and African ancestry5. Stroke genetic risk scores were predictive of ischaemic stroke independent of clinical risk factors in 52,600 clinical-trial participants with cardiometabolic disease. Our results provide insights to inform biology, reveal potential drug targets and derive genetic risk prediction tools across ancestries

    Interacting domains of the HN and F proteins of Newcastle disease virus

    No full text
    These include: This article cites 41 articles, 20 of which can be accessed free at

    Interacting Domains of the HN and F Proteins of Newcastle Disease Virus

    Get PDF
    The activation of most paramyxovirus fusion proteins (F proteins) requires not only cleavage of F(0) to F(1) and F(2) but also coexpression of the homologous attachment protein, hemagglutinin-neuraminidase (HN) or hemagglutinin (H). The type specificity requirement for HN or H protein coexpression strongly suggests that an interaction between HN and F proteins is required for fusion, and studies of chimeric HN proteins have implicated the membrane-proximal ectodomain in this interaction. Using biotin-labeled peptides with sequences of the Newcastle disease virus (NDV) F protein heptad repeat 2 (HR2) domain, we detected a specific interaction with amino acids 124 to 152 from the NDV HN protein. Biotin-labeled HR2 peptides bound to glutathione S-transferase (GST) fusion proteins containing these HN protein sequences but not to GST or to GST containing HN protein sequences corresponding to amino acids 49 to 118. To verify the functional significance of the interaction, two point mutations in the HN protein gene, I133L and L140A, were made individually by site-specific mutagenesis to produce two mutant proteins. These mutations inhibited the fusion promotion activities of the proteins without significantly affecting their surface expression, attachment activities, or neuraminidase activities. Furthermore, these changes in the sequence of amino acids 124 to 152 in the GST-HN fusion protein that bound HR2 peptides affected the binding of the peptides. These results are consistent with the hypothesis that HN protein binds to the F protein HR2 domain, an interaction important for the fusion promotion activity of the HN protein

    Progression of a vesicular stomatitis virus infection in primary lymphocytes is restricted at multiple levels during B cell activation

    No full text
    Small resting B cells do not support a productive vesicular stomatitis virus (VSV) infection, but are induced by B cell activators to become fully permissive for VSV replication. Nonpermissive B cell populations restrict VSV expression at multiple points: transcript levels, translation, and maturation. Unstimulated resting G0 B cells can be infected by VSV and support the synthesis of all VSV mRNAs. Steady-state levels of viral transcripts are selectively enhanced by T cell-derived cytokines to an extent comparable with that seen for cytokine-regulated cellular mRNAs. However, viral proteins are not detected in immunoprecipitates from unstimulated or cytokine-stimulated B cells despite the fact that viral mRNAs are associated with polysomes and can be translated in vitro. This translational block is released by stimulation of infected B cells with mitogenic anti-lg or LPS, or non-mitogenic PMA. VSV virion maturation is also regulated by activation signals, because neither anti-lg nor PMA-stimulated B cells produce high levels of infectious VSV particles. Because anti-lg stimulation supports viral genome replication, maturational arrest is apparently at virus assembly or release. PMA and ionomycin induces changes beyond those seen with anti-lg, because these B cells produce PFUs at levels comparable with those seen with LPS-activated B cells and VSV-permissive cell lines. Activation-dependent regulation of virus expression provides a new paradigm for assessing activator-induced events in B cell differentiation not revealed by previous assessments of proliferation of Ab synthesis

    Evidence for mixed membrane topology of the newcastle disease virus fusion protein

    No full text
    The synthesis of the Newcastle disease virus (NDV) fusion (F) protein in a cell-free protein-synthesizing system containing membranes was characterized. The membrane-associated products were in at least two different topological forms with respect to the membranes. The properties of one form were consistent with the expected membrane insertion as a classical type 1 glycoprotein. This form of the protein was fully glycosylated, and sequences amino terminal to the transmembrane domain were protected from protease digestion by the membranes. The second form of membrane-associated F protein was partially glycosylated and partially protected from protease digestion by the membranes. Protease digestion resulted in a 23-kDa protease-protected polypeptide derived from F2 sequences and sequences from the amino-terminal end of the F1 domain. Furthermore, a 10-kDa polypeptide derived from the cytoplasmic domain (CT) was also protected from protease digestion by the membranes. Protease resistance of the 23- and 10-kDa polypeptides suggested that this second form of F protein inserted in membranes in a polytopic conformation with both the amino-terminal end and the carboxyl-terminal end translocated across membranes. To determine if this second form of the fusion protein could be found in cells expressing the F protein, two different approaches were taken. A polypeptide with the size of the partially translocated F protein was detected by Western analysis of proteins in total-cell extracts of NDV strain B1 (avirulent)-infected Cos-7 cells. Using antibodies raised against a peptide with sequences from the cytoplasmic domain, CT sequences were detected on surfaces of F protein-expressing Cos-7 cells by immunofluorescence and by flow cytometry. This antibody also inhibited the fusion of red blood cells to cells expressing F and HN proteins. These results suggest that NDV F protein made both in a cell-free system and in Cos-7 cells may exist in two topological forms with respect to membranes and that the second form of the protein may be involved in cell-cell fusion

    Regulation of B cell survival in xid mice by the proto-oncogene bcl-2

    No full text
    CBA/N mice carry an X-linked immunodeficiency (xid) due to a point mutation in the Bruton\u27s tyrosine kinase (btk) gene. xid mice have a smaller peripheral B cell pool than normal animals, lack CD5+ B cells (B1), and are hyporesponsive to mitogenic anti-Igs and thymus-independent type 2 Ags. The proto-oncogene bcl-2 affects B cell homeostasis by suppressing programmed cell death. We hypothesized that reduced bcl-2 expression could enhance programmed cell death in xid B cells, directly causing poor peripheral B cell survival and indirectly affecting Ag responsiveness. We measured and compared levels of endogenous Bcl-2 protein and spontaneous apoptosis in xid and normal B cells, and determined the effect of a human bcl-2/Ig minigene on B cell survival and Ag responsiveness in bcl-2 transgenics. The amount of endogenous Bcl-2 was reduced fivefold in freshly isolated xid B cells compared with that in normal cells, but was equal in xid and normal T cells. Attrition by spontaneous apoptosis was significantly higher in cultured xid B cells. Expression of the bcl-2 transgene suppressed apoptosis equally in normal and xid B cells, prolonged in vitro survival, and markedly expanded in vivo the follicular B cell population normally reduced in xid mice. However, most xid defects persisted; xid/bcl-2 mice remained deficient in B1 cells and hyporesponsive to anti-Igs, thymus-independent type 1 Ags, and thymus-independent type 2 Ags. The data suggest that signal transduction pathways using Btk independently regulate B cell survival and Ag responsiveness

    The Transmembrane Domain Sequence Affects the Structure and Function of the Newcastle Disease Virus Fusion Protein ▿

    No full text
    The role of specific sequences in the transmembrane (TM) domain of Newcastle disease virus (NDV) fusion (F) protein in the structure and function of this protein was assessed by replacing this domain with the F protein TM domains from two other paramyxoviruses, Sendai virus (SV) and measles virus (MV), or the TM domain of the unrelated glycoprotein (G) of vesicular stomatitis virus (VSV). Mutant proteins with the SV or MV F protein TM domains were expressed, transported to cell surfaces, and proteolytically cleaved at levels comparable to that of the wild-type protein, while mutant proteins with the VSV G protein TM domain were less efficiently expressed on cell surfaces and proteolytically cleaved. All mutant proteins were defective in all steps of membrane fusion, including hemifusion. In contrast to the wild-type protein, the mutant proteins did not form detectable complexes with the NDV hemagglutinin-neuraminidase (HN) protein. As determined by binding of conformation-sensitive antibodies, the conformations of the ectodomains of the mutant proteins were altered. These results show that the specific sequence of the TM domain of the NDV F protein is important for the conformation of the preactivation form of the ectodomain, the interactions of the protein with HN protein, and fusion activity

    Phospholipase A2 mediates immediate early genes in cultured renal epithelial cells: possible role of lysophospholipid

    Get PDF
    BACKGROUND: Exposure to high levels of oxalate induces oxidant stress in renal epithelial cells and produces diverse changes in cell function, ranging from cell death to cellular adaptation, as evidenced by increased DNA synthesis, cellular proliferation, and induction of genes associated with remodeling and repair. These studies focused on cellular adaptation to this oxidant stress, examining the manner by which oxalate exposure leads to increased expression of immediate early genes (IEGs). Specifically, our studies assessed the possibility that oxalate-induced changes in IEG expression are mediated by phospholipase A2 (PLA2), a common pathway in cellular stress responses. METHODS: Madin-Darby canine kidney (MDCK) cells were exposed to oxalate in the presence or absence of PLA2 inhibitors: mepacrine and arachidonyl trifluoromethyl ketone (AACOCF3). Expression of IEG (c-jun, egr-1, and c-myc) mRNA was assessed by Northern blot analysis. PLA2 activity was determined by measuring the release of [3H]arachidonic acid (AA) from prelabeled cells. RESULTS: Oxalate exposure (1 to 1.5 mmol/L) induced time- and concentration-dependent increases in IEG mRNA. Treatment with mepacrine resulted in a 75 to 113% reduction of oxalate-induced c-jun, egr-1, and c-myc mRNA, while AACOCF3 caused a 41 to 46% reduction of oxalate-induced c-jun and egr-1 mRNA. Of the two major byproducts of PLA2, only lysophosphatidylcholine (20 micromol/L) increased c-jun and egr-1 mRNA. In contrast, AA (25 micromol/L) attenuated the oxalate-induced increase in c-jun and egr-1 mRNA, presumably by inhibiting PLA2 activity. CONCLUSIONS: These findings suggest that PLA2 plays a major role in oxalate-induced IEG expression in renal epithelial cells and that lysophospholipids might be a possible lipid mediator in this pathway
    corecore