826 research outputs found

    Near-Infrared Photometry of Irregular Satellites of Jupiter and Saturn

    Full text link
    We present JHKs photometry of 10 Jovian and 4 Saturnian irregular satellites, taken with the Near-InfraRed Imager (NIRI) at the 8-m Gemini North Observatory on Mauna Kea, Hawaii. The observed objects have near-infrared colors consistent with C, P and D-type asteroids, although J XII Ananke and S IX Phoebe show weak indications of possible water features in the H filter. The four members of the Himalia-family have similar near-infrared colors, as do the two members of the Gallic family, S XX Paaliaq and S XXIX Siarnaq. From low resolution normalized reflectance spectra based on the broadband colors and covering 0.4 to 2.2 microns, the irregular satellites are identified as C-type (J VII Pasiphae, J VI Himalia and S IX Phoebe), P-type (J XII Ananke and J XVIII Themisto) and D-type (J IX Carme and J X Sinope), showing a diversity of origins of these objects.Comment: Accepted by ApJ Letters (emulateapj, 8pages, including 4 figures); Typos corrected, references adde

    A new perspective on the irregular satellites of Saturn - II Dynamical and physical origin

    Full text link
    The origin of the irregular satellites of the giant planets has been long debated since their discovery. Their dynamical features argue against an in-situ formation suggesting they are captured bodies, yet there is no global consensus on the physical process at the basis of their capture. In this paper we explore the collisional capture scenario, where the actual satellites originated from impacts occurred within Saturn's influence sphere. By modeling the inverse capture problem, we estimated the families of orbits of the possible parent bodies and the specific impulse needed for their capture. The orbits of these putative parent bodies are compared to those of the minor bodies of the outer Solar System to outline their possible region of formation. Finally, we tested the collisional capture hypothesis on Phoebe by taking advantage of the data supplied by Cassini on its major crater, Jason. Our results presented a realistic range of solutions matching the observational and dynamical data.Comment: 26 Pages, 21 Figure

    Light curves and colours of the faint Uranian irregular satellites Sycorax, Prospero, Stephano, Setebos and Trinculo

    Get PDF
    After the work of Gladman et al. (1998), it is now assessed that many irregular satellites are orbiting around Uranus. Despite many studies have been performed in past years, very few is know for the light-curves of these objects and inconsistencies are present between colours derived by different authors. This situation motivated our effort to improve both the knowledge of colours and light curves. We present and discuss time series observations of Sycorax, Prospero, Stephano, Setebos and Trinculo, five faint irregular satellites of Uranus, carried out at VLT, ESO Paranal (Chile) in the nights between 29 and 30 July, 2005 and 25 and 30 November, 2005. We derive light curves for Sycorax and Prospero and colours for all of these these bodies. For Sycorax we obtain colours B-V =0.839 +/- 0.014, V-R = 0.531 +/- 0.005 and a light curve which is suggestive of a periodical variation with period about 3.6 hours and amplitude about 0.067 +/- 0.004 mag. The periods and colours we derive for Sycorax are in agreement with our previous determination in 1999 using NTT. We derive also a light-curve for Prospero which suggests an amplitude of about 0.2 mag and a periodicity of about 4 hours. However, the sparseness of our data, prevents a more precise characterization of the light-curves, and we can not determine wether they are one-peaked or two-peaked. Hence, these periods and amplitudes have to be considered preliminary estimates. As for Setebos, Stephano and Trinculo the present data do not allow to derive any unambiguous periodicity, despite Setebos displays a significant variability with amplitude about as large as that of Prospero. Colours for Prospero, Setebos, Stephano and Trinculo are in marginal agreement with the literature.Comment: Submitted to A&A 13 Dec 2006, Accepted 17 Apr 2007. 18 pages, 8 colours figures BW printable, 6 tables. LaTeX 2.09, with packages: natbib, graphicx, longtable, aa4babbage included in the submission file (tar gzipped of 349 KBytes

    The Albedo Distribution of Near Earth Asteroids

    Get PDF
    The cryogenic WISE mission in 2010 was extremely sensitive to asteroids and not biased against detecting dark objects. The albedos of 428 Near Earth Asteroids (NEAs) observed by WISE during its fully cryogenic mission can be fit quite well by a 3 parameter function that is the sum of two Rayleigh distributions. The Rayleigh distribution is zero for negative values, and follows f(x)=xexp[x2/(2σ2)]/σ2f(x) = x \exp[-x^2/(2\sigma^2)]/\sigma^2 for positive x. The peak value is at x=\sigma, so the position and width are tied together. The three parameters are the fraction of the objects in the dark population, the position of the dark peak, and the position of the brighter peak. We find that 25.3% of the NEAs observed by WISE are in a very dark population peaking at pV=0.03p_V = 0.03, while the other 74.7% of the NEAs seen by WISE are in a moderately dark population peaking at pV=0.168p_V = 0.168. A consequence of this bimodal distribution is that the Congressional mandate to find 90% of all NEAs larger than 140 m diameter cannot be satisfied by surveying to H=22 mag, since a 140 m diameter asteroid at the very dark peak has H=23.7 mag, and more than 10% of NEAs are darker than p_V = 0.03.Comment: 7 pages LaTex, 4 figures, accepted for publication in the Astronomical Journa

    Photometry of Irregular Satellites of Uranus and Neptune

    Full text link
    We present BVR photometric colors of six Uranian and two Neptunian irregular satellites, collected using the Magellan Observatory (Las Campanas, Chile) and the Keck Observatory, (Manua Kea, Hawaii). The colors range from neutral to light red, and like the Jovian and the Saturnian irregulars (Grav et al. 2003) there is an apparent lack of the extremely red objects found among the Centaurs and Kuiper belt objects. The Uranian irregulars can be divided into three possible dynamical families, but the colors collected show that two of these dynamical families, the Caliban and Sycorax-clusters, have heterogeneous colors. Of the third possible family, the 168-degree cluster containing two objects with similar average inclinations but quite different average semi-major axis, only one object (U XXI Trinculo) was observed. The heterogeneous colors and the large dispersion of the average orbital elements leads us to doubt that they are collisional families. We favor single captures as a more likely scenario. The two neptunians observed (N II Nereid and S/2002 N1) both have very similar neutral, sun-like colors. Together with the high collisional probability between these two objects over the age of the solar system (Nesvorny et al. 2003, Holman et al. 2004), this suggests that S/2002 N1 be a fragment of Nereid, broken loose during a collision or cratering event with an undetermined impactor.Comment: 13 pages (including 3 figures and 2 tables). Submitted to ApJ Letter

    Lingering grains of truth around comet 17P/Holmes

    Get PDF
    Comet 17P/Holmes underwent a massive outburst in 2007 Oct., brightening by a factor of almost a million in under 48 hours. We used infrared images taken by the Wide-Field Survey Explorer mission to characterize the comet as it appeared at a heliocentric distance of 5.1 AU almost 3 years after the outburst. The comet appeared to be active with a coma and dust trail along the orbital plane. We constrained the diameter, albedo, and beaming parameter of the nucleus to 4.135 ±\pm 0.610 km, 0.03 ±\pm 0.01 and 1.03 ±\pm 0.21, respectively. The properties of the nucleus are consistent with those of other Jupiter Family comets. The best-fit temperature of the coma was 134 ±\pm 11 K, slightly higher than the blackbody temperature at that heliocentric distance. Using Finson-Probstein modeling we found that the morphology of the trail was consistent with ejection during the 2007 outburst and was made up of dust grains between 250 μ\mum and a few cm in radius. The trail mass was \sim 1.2 - 5.3 ×\times 1010^{10} kg.Comment: Accepted to ApJ. 2 tables, 4 figure

    Main Belt Asteroids with WISE/NEOWISE: Near-Infrared Albedos

    Get PDF
    We present revised near-infrared albedo fits of 2835 Main Belt asteroids observed by WISE/NEOWISE over the course of its fully cryogenic survey in 2010. These fits are derived from reflected-light near-infrared images taken simultaneously with thermal emission measurements, allowing for more accurate measurements of the near-infrared albedos than is possible for visible albedo measurements. As our sample requires reflected light measurements, it undersamples small, low albedo asteroids, as well as those with blue spectral slopes across the wavelengths investigated. We find that the Main Belt separates into three distinct groups of 6%, 16%, and 40% reflectance at 3.4 um. Conversely, the 4.6 um albedo distribution spans the full range of possible values with no clear grouping. Asteroid families show a narrow distribution of 3.4 um albedos within each family that map to one of the three observed groupings, with the (221) Eos family being the sole family associated with the 16% reflectance 3.4 um albedo group. We show that near-infrared albedos derived from simultaneous thermal emission and reflected light measurements are an important indicator of asteroid taxonomy and can identify interesting targets for spectroscopic followup.Comment: Accepted for publication in ApJ; full version of Table1 to be published electronically in the journa
    corecore