95 research outputs found

    Mechanical properties of three-dimensional interconnected alumina/steel metal matrix composites

    Get PDF
    Three-dimensional interconnected alumina/steel metal matrix composites (MMCs) were produced by pressureless Ti-activated melt infiltration method using three types of Al2O3 powder with different sizes and shapes. By partial sintering during infiltration an interpenetrating ceramic network was realised. The effect of the ceramic particle size and shape on the resulting ceramic network, volume % fraction and the MMC properties is presented. The MMCs were characterised for mechanical properties at room temperature and elevated temperature. An increase in flexural strength and Young's modulus with decreasing particle size has been observed. In addition, the effect of the volume of ceramic content and the surface finish of the MMCs on the wear behaviour is show

    X-ray computed micro tomography as complementary method for the characterization of activated porous ceramic preforms

    Get PDF
    X-ray computed micro tomography (CT) is an alternative technique to the classical methods such as mercury intrusion (MIP) and gas pycnometry (HP) to obtain the porosity, pore-size distribution, and density of porous materials. Besides the advantage of being a nondestructive method, it gives not only bulk properties, but also spatially resolved information. In the present work, uniaxially pressed porous alumina performs activated by titanium were analyzed with both the classical techniques and CT. The benefits and disadvantages of the applied measurement techniques were pointed out and discussed. With the generated data, development was proposed for an infiltration model under ideal conditions for the production of metal matrix composites (MMC) by pressureless melt infiltration of porous ceramic preforms. Therefore, the reliability of the results, received from different investigation techniques, was proved statistically and stereologicall

    Correlation of conductivity and angle integrated valence band photoemission characteristics in single crystal iron perovskites for 300 K < T < 800 K: Comparison of surface and bulk sensitive methods

    Full text link
    A single crystal monolith of La0.9Sr0.1FeO3 and thin pulsed laser deposited film of La0.8Sr0.2Fe0.8Ni0.2O3 were subject to angle integrated valence band photoemission spectroscopy in ultra high vacuum and conductivity experiments in ambient air at temperatures from 300 K to 800 K. Except for several sputtering and annealing cycles, the specimen were not prepared in-situ.. Peculiar changes in the temperature dependent, bulk representative conductivity profile as a result of reversible phase transitions, and irreversible chemical changes are semi-quantitatively reflected by the intensity variation in the more surface representative valence band spectra near the Fermi energy. X-ray photoelectron diffraction images reflect the symmetry as expected from bulk iron perovskites. The correlation of spectral details in the valence band photoemission spectra (VB PES) and details of the conductivity during temperature variation suggest that valuable information on electronic structure and transport properties of complex materials may be obtained without in-situ preparation

    Yttrium and Hydrogen Superstructure and Correlation of Lattice Expansion and Proton Conductivity in the BaZr0.9Y0.1O2.95 Proton Conductor

    Full text link
    Bragg reflections in Y-resonant x-ray diffractograms of BaZr0.9Y0.1O2.95 (BZY10) reveal that Y is organized in a superstructure. Comparison with neutron diffraction superstructure reflections in protonated/deuterated BZY10 suggests that both superstructures are linked, and that protons move in the landscape imposed by the Y. The thermal lattice expansion decreases abruptly for protonated BZY10 at T≄648±20 K, coinciding with the onset of lateral proton diffusion and suggesting a correlation of structural changes and proton conductivity. The chemical shift in the Y L1-shell x-ray absorption spectra reveals a reduction from Y3+ toward Y2+ upon protonation

    Correlation of high temperature X-ray photoemission spectral features and conductivity of epitaxially strained (La0.8Sr0.2)0.95Ni0.2Fe0.8O3/SrTiO3(110)

    Full text link
    Reversible and irreversible discontinuities at around 573 K and 823 K in the electric conductivity of a strained 175 nm thin film of (La0.8Sr0.2)0.95Ni0.2Fe0.8O3-{\delta} grown by pulsed laser deposition on SrTiO3 (110) are reflected by valence band changes as monitored in photoemission and oxygen K-edge x-ray absorption spectra. The irreversible jump at 823 K is attributed to depletion of doped electron holes and reduction of Fe4+ to Fe3+, as evidenced by oxygen and iron core level soft x-ray spectroscopy, and possibly of a chemical origin, whereas the reversible jump at 573 K possibly originates from structural changes

    Shear Viscosity of Clay-like Colloids in Computer Simulations and Experiments

    Full text link
    Dense suspensions of small strongly interacting particles are complex systems, which are rarely understood on the microscopic level. We investigate properties of dense suspensions and sediments of small spherical Al_2O_3 particles in a shear cell by means of a combined Molecular Dynamics (MD) and Stochastic Rotation Dynamics (SRD) simulation. We study structuring effects and the dependence of the suspension's viscosity on the shear rate and shear thinning for systems of varying salt concentration and pH value. To show the agreement of our results to experimental data, the relation between bulk pH value and surface charge of spherical colloidal particles is modeled by Debye-Hueckel theory in conjunction with a 2pK charge regulation model.Comment: 15 pages, 8 figure

    Diffusing-wave spectroscopy of nonergodic media

    Full text link
    We introduce an elegant method which allows the application of diffusing-wave spectroscopy (DWS) to nonergodic, solid-like samples. The method is based on the idea that light transmitted through a sandwich of two turbid cells can be considered ergodic even though only the second cell is ergodic. If absorption and/or leakage of light take place at the interface between the cells, we establish a so-called "multiplication rule", which relates the intensity autocorrelation function of light transmitted through the double-cell sandwich to the autocorrelation functions of individual cells by a simple multiplication. To test the proposed method, we perform a series of DWS experiments using colloidal gels as model nonergodic media. Our experimental data are consistent with the theoretical predictions, allowing quantitative characterization of nonergodic media and demonstrating the validity of the proposed technique.Comment: RevTeX, 12 pages, 6 figures. Accepted for publication in Phys. Rev.

    The effect of compressive strain on the Raman modes of the dry and hydrated BaCe0.8Y0.2O3 proton conductor

    Full text link
    The BaCe0.8Y0.2O3-{\delta} proton conductor under hydration and under compressive strain has been analyzed with high pressure Raman spectroscopy and high pressure x-ray diffraction. The pressure dependent variation of the Ag and B2g bending modes from the O-Ce-O unit is suppressed when the proton conductor is hydrated, affecting directly the proton transfer by locally changing the electron density of the oxygen ions. Compressive strain causes a hardening of the Ce-O stretching bond. The activation barrier for proton conductivity is raised, in line with recent findings using high pressure and high temperature impedance spectroscopy. The increasing Raman frequency of the B1g and B3g modes thus implies that the phonons become hardened and increase the vibration energy in the a-c crystal plane upon compressive strain, whereas phonons are relaxed in the b-axis, and thus reveal softening of the Ag and B2g modes. Lattice toughening in the a-c crystal plane raises therefore a higher activation barrier for proton transfer and thus anisotropic conductivity. The experimental findings of the interaction of protons with the ceramic host lattice under external strain may provide a general guideline for yet to develop epitaxial strained proton conducting thin film systems with high proton mobility and low activation energy
    • 

    corecore