48 research outputs found

    Neuromuscular abnormality and autonomic dysfunction in patients with cerebrotendinous xanthomatosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cerebrotendinous xanthomatosis (CTX) is a rare lipid-storage disease. Neuromuscular abnormality and autonomic system (ANS) dysfuction in CTX are rarely examined in large-scale studies in the literature. We studied the peripheral nervous system, myopathology, and autonomic system of four CTX patients and performed a literature review of the reported CTX patients with peripheral neuropathy.</p> <p>Methods</p> <p>Four biochemically and genetically confirmed CTX patients, belonging to two families, were included for study and all received nerve conduction study (NCS), muscle biopsy for histopathologic and ultrastructural study, skin biopsy for intraepidermal nerve fiber (INEF) density measurement, autonomic testings including sympathetic skin response, R-R interval variation and head-up tilt test using an automated tilt table to record the changes of blood pressure and heart rate in different postures. The Q-Sweat test was also applied for the detection of sweat amount and onset time of response. The clinical characteristics, study methods and results of 13 studies of peripheral neuropathy in CTX patients in the literature were also recorded for analysis.</p> <p>Results</p> <p>The results of NCS study showed axonal sensory-motor polyneuropathy in three CTX cases and mixed axonal and demyelinating sensor-motor polyneuropathy in one. The myopathological and histopathologic studies revealed mild denervation characteristics, but the ultrastructural study revealed changes of mitochondria and the membranous system, and increased amounts of glycogen, lipofuscin and lipid deposition. The ANS study revealed different degrees of abnormalities in the applied tests and the INEF density measurement showed small fiber neuropathy in three of the four CTX patients. The literature review of peripheral neuropathy in CTX revealed different types of peripheral neuropathy, of which axonal peripheral neuropathy was the most common.</p> <p>Conclusions</p> <p>Peripheral neuropathy, especially the subtype of axonal sensori-motor neuropathy, is common in patients with CTX. Evidence of lipid metabolic derangement in CTX can be reflected in ultrastructural studies of muscles. With an adequate multi-parametric evaluation, a high incidence of ANS abnormalities can be seen in this rare lipid-storage disease, and a high incidence of small fiber involvement is also reflected in the IENF density measurement of skin biopsies.</p

    Determinants of fast marathon performance: low basal sympathetic drive, enhanced postcompetition vasodilatation and preserved cardiac performance after competition

    No full text
    OBJECTIVE: To test the hypothesis that enhanced post-exercise vasodilatation is related to sympathetic drive to resistance vessels and to fast marathon performance. DESIGN: Prospective field study before and after running a marathon. PARTICIPANTS: 51 healthy amateur runners who volunteered to participate. The fastest finished 4th, the slowest 1290th out of 1324 participants. INTERVENTIONS: None Main Outcome Measurements: Competition time, beat to beat blood pressure by the vascular unloading technique, oscillometric blood pressure, beat to beat stroke volume by impedance cardiography, total peripheral resistance changes calculated from blood pressure and stroke volume changes, sympathetic modulation of vasomotor tone and parasympathetic modulation of sinus node function by spectral analysis of blood pressure and heart rate variability, baroreceptor reflex sensitivity by the sequence method. RESULTS: Slow performers in contrast to fast performers exhibited a higher 0.1 Hz band of diastolic blood pressure variability before the competition (0.1 Hz BPV) (P<0.001), diminished vasodilatation (P<0.01) and a decrease in stroke index (P<0.001) in response to the race. Single and multiple regression analyses further corroborated the findings. CONCLUSIONS: Fast performance in the marathon is associated with low sympathetic modulation of vasomotor tone, maintained stroke index post-competition and enhanced exercise-induced vasodilatation. We postulate that maintaining a low level of sympathetic modulation to resistance vessels during the course of training may indicate it's appropriateness thus enabling fast performance by optimal post-exercise vasodilatation and by prevention of post-competition cardiac dysfunction. This will have to be tested in future longitudinal studies

    Regulation of T-cell function by endogenously produced angiotensin II

    No full text
    The adaptive immune response and, in particular, T cells have been shown to be important in the genesis of hypertension. In the present study, we sought to determine how the interplay between ANG II, NADPH oxidase, and reactive oxygen species modulates T cell activation and ultimately causes hypertension. We determined that T cells express angiotensinogen, the angiotensin I-converting enzyme, and renin and produce physiological levels of ANG II. AT1 receptors were primarily expressed intracellularly, and endogenously produced ANG II increased T-cell activation, expression of tissue homing markers, and production of the cytokine TNF-α. Inhibition of T-cell ACE reduced TNF-α production, indicating endogenously produced ANG II has a regulatory role in this process. Studies with specific antagonists and T cells from AT1R and AT2R-deficient mice indicated that both receptor subtypes contribute to TNF-α production. We found that superoxide was a critical mediator of T-cell TNF-α production, as this was significantly inhibited by polyethylene glycol (PEG)-SOD, but not PEG-catalase. Thus, T cells contain an endogenous renin-angiotensin system that modulates T-cell function, NADPH oxidase activity, and production of superoxide that, in turn, modulates TNF-α production. These findings contribute to our understanding of how ANG II and T cells enhance inflammation in cardiovascular disease

    Agonistic autoantibodies to the AT1 receptor in a transgenic rat model of preeclampsia

    No full text
    We used rats transgenic for the human angiotensinogen (hAogen) gene and the human renin (hRen) gene and crossed the strains to produce a model of preeclampsia in the dams. The female (n=9) hAogen x male hRen cross had severe (telemetry-measured) hypertension and albuminuria, which developed during the last trimester of pregnancy and subsided after delivery. The converse cross (n=9) and control (n=9) SD rats did not. We demonstrated that the female hAogen X male hRen cross had agonistic antibodies capable of activating the angiotensin (Ang) II AT1 receptor (AT1R-AA) and defined the epitope on the receptor's second extracellular loop. The phenomenon also occurs in humans with preeclampsia. The rats displayed renal histology reminiscent of preeclampsia, including fibrin deposition confined to the glomeruli. The complement system was activated in glomeruli and IgG deposits were present that may represent AT1R-AA. Finally, we observed an atherosis-like lesion in the spiral arteries of the placental bed, which we called placental-bed arteriolosclerosis. Our model may be relevant to preeclampsia in humans

    Fatigue shifts and scatters heart rate variability in elite endurance athletes

    Get PDF
    PURPOSE: This longitudinal study aimed at comparing heart rate variability (HRV) in elite athletes identified either in 'fatigue' or in 'no-fatigue' state in 'real life' conditions. METHODS: 57 elite Nordic-skiers were surveyed over 4 years. R-R intervals were recorded supine (SU) and standing (ST). A fatigue state was quoted with a validated questionnaire. A multilevel linear regression model was used to analyze relationships between heart rate (HR) and HRV descriptors [total spectral power (TP), power in low (LF) and high frequency (HF) ranges expressed in ms(2) and normalized units (nu)] and the status without and with fatigue. The variables not distributed normally were transformed by taking their common logarithm (log10). RESULTS: 172 trials were identified as in a 'fatigue' and 891 as in 'no-fatigue' state. All supine HR and HRV parameters (Beta+/-SE) were significantly different (P&lt;0.0001) between 'fatigue' and 'no-fatigue': HRSU (+6.27+/-0.61 bpm), logTPSU (-0.36+/-0.04), logLFSU (-0.27+/-0.04), logHFSU (-0.46+/-0.05), logLF/HFSU (+0.19+/-0.03), HFSU(nu) (-9.55+/-1.33). Differences were also significant (P&lt;0.0001) in standing: HRST (+8.83+/-0.89), logTPST (-0.28+/-0.03), logLFST (-0.29+/-0.03), logHFST (-0.32+/-0.04). Also, intra-individual variance of HRV parameters was larger (P&lt;0.05) in the 'fatigue' state (logTPSU: 0.26 vs. 0.07, logLFSU: 0.28 vs. 0.11, logHFSU: 0.32 vs. 0.08, logTPST: 0.13 vs. 0.07, logLFST: 0.16 vs. 0.07, logHFST: 0.25 vs. 0.14). CONCLUSION: HRV was significantly lower in 'fatigue' vs. 'no-fatigue' but accompanied with larger intra-individual variance of HRV parameters in 'fatigue'. The broader intra-individual variance of HRV parameters might encompass different changes from no-fatigue state, possibly reflecting different fatigue-induced alterations of HRV pattern
    corecore