4,033 research outputs found
Aluminum abundances of multiple stellar generations in the globular cluster NGC 1851
We study the distribution of aluminum abundances among red giants in the
peculiar globular cluster NGC 1851. Aluminum abundances were derived from the
strong doublet Al I 8772-8773 A measured on intermediate resolution FLAMES
spectra of 50 cluster stars acquired under the Gaia-ESO public survey. We
coupled these abundances with previously derived abundance of O, Na, Mg to
fully characterize the interplay of the NeNa and MgAl cycles of H-burning at
high temperature in the early stellar generation in NGC 1851. The stars in our
sample show well defined correlations between Al,Na and Si; Al is
anticorrelated with O and Mg. The average value of the [Al/Fe] ratio steadily
increases going from the first generation stars to the second generation
populations with intermediate and extremely modified composition. We confirm on
a larger database the results recently obtained by us (Carretta et al. 2011a):
the pattern of abundances of proton-capture elements implies a moderate
production of Al in NGC 1851. We find evidence of a statistically significant
positive correlation between Al and Ba abundances in the more metal-rich
component of red giants in NGC 1851.Comment: Astronomy and Astrophysics, in pres
The Chemical Compositions of the SRd Variable Stars-- II. WY Andromedae, VW Eridani, and UW Librae
Chemical compositions are derived from high-resolution spectra for three
stars classed as SRd variables in the General Catalogue of Variable Stars.
These stars are shown to be metal-poor supergiants: WY And with [Fe/H] = -1.0,
VW Eri with [Fe/H] = -1.8, and UW Lib with [Fe/H] = -1.2. Their compositions
are identical to within the measurement errors with the compositions of
subdwarfs, subgiants, and less evolved giants of the same FeH. The stars are at
the tip of the first giant branch or in the early stages of evolution along the
asymptotic giant branch (AGB). There is no convincing evidence that these SRd
variables are experiencing thermal pulsing and the third dredge-up on the AGB.
The SRds appear to be the cool limit of the sequence of RV Tauri variables.Comment: 14 pages, 1 figure, 4 table
The Chemical Evolution of the Galaxy: the two-infall model
In this paper we present a new chemical evolution model for the Galaxy which
assumes two main infall episodes for the formation of halo-thick disk and thin
disk, respectively. We do not try to take into account explicitly the evolution
of the halo but we implicitly assume that the timescale for the formation of
the halo was of the same order as the timescale for the formation of the thick
disk. The formation of the thin-disk is much longer than that of the thick
disk, implying that the infalling gas forming the thin-disk comes not only from
the thick disk but mainly from the intergalactic medium. The timescale for the
formation of the thin-disk is assumed to be a function of the galactocentric
distance, leading to an inside-out picture for the Galaxy building. The model
takes into account the most up to date nucleosynthesis prescriptions and adopts
a threshold in the star formation process which naturally produces a hiatus in
the star formation rate at the end of the thick disk phase, as suggested by
recent observations. The model results are compared with an extended set of
observational constraints. Among these constraints, the tightest one is the
metallicity distribution of the G-dwarf stars for which new data are now
available. Our model fits very well these new data. We show that in order to
reproduce most of these constraints a timescale Gyr for the
(halo)-thick-disk and of 8 Gyr for the thin-disk formation in the solar
vicinity are required. We predict that the radial abundance gradients in the
inner regions of the disk () are steeper than in the outer
regions, a result confirmed by recent abundance determinations, and that the
inner ones steepen in time during the Galactic lifetime.Comment: 48 pages, 20 Postscript figures, AASTex v.4.0, to be published in
Astrophysical Journa
An Abundance Analysis for Five Red Horizontal Branch Stars in the Extremely Metal Rich Globular Cluster NGC 6553
We provide a high dispersion line-by-line abundance analysis of five red HB
stars in the extremely metal rich galactic globular cluster NGC 6553. These red
HB stars are significantly hotter than the very cool stars near the tip of the
giant branch in such a metal rich globular cluster and hence their spectra are
much more amenable to an abundance analysis than would be the case for red
giants.
We find that the mean [Fe/H] for NGC 6553 is -0.16 dex, comparable to the
mean abundance in the galactic bulge found by McWilliam & Rich (1994) and
considerably higher than that obtained from an analysis of two red giants in
this cluster by Barbuy etal (1999). The relative abundance for the best
determined alpha process element (Ca) indicates an excess of alpha process
elements of about a factor of two. The metallicity of NGC 6553 reaches the
average of the Galactic bulge and of the solar neighborhood.Comment: 29 pages, 6 figures, accepted for publication in the Ap
Star-to-star Na and O abundance variations along the red giant branch in NGC 2808
We report for the first time Na and O abundances from high-resolution, high
S/N echelle spectra of 20 red giants in NGC 2808, taken as part of the Science
Verification program of the FLAMES multi-object spectrograph at the ESO VLT. In
these stars, spanning about 3 mag from the red giant branch (RGB) tip, large
variations are detected in the abundances of oxygen and sodium, anticorrelated
with each other; this is a well known evidence of proton-capture reactions at
high temperatures in the ON and NeNa cycles. One star appears super O-poor; if
the extension of the Na-O anticorrelation is confirmed, NGC 2808 might reach O
depletion levels as large as those of M 13. This result confirms our previous
findings based on lower resolution spectra (Carretta et al. 2003) of a large
star-to-star scatter in proton capture elements at all positions along the RGB
in NGC 2808, with no significant evolutionary contribution. Finally, the
average metallicity for NGC 2808 is [Fe/H]= -1.14 +/- 0.01 dex (rms=0.06) from
19 stars.Comment: 12 pages, 3 figures, accepted for publication in ApJ Letter
Na-O Anticorrelation and HB. VIII. Proton-capture elements and metallicities in 17 globular clusters from UVES spectra
We present homogeneous abundances for Fe and some of the elements involved in
the proton-capture reactions (O, Na, Mg, Al, and Si) for 202 red giants in 17
Galactic globular clusters (GCs) from the analysis of high resolution UVES
spectra obtained with FLAMES@ESO-VLT2. Our programme clusters span almost the
whole range in metallicity of GCs and were selected to sample the widest range
of global parameters (HB morphology, masses, concentration, etc). Here we focus
on the discussion of the Na-O and Mg-Al anticorrelations and related issues.
Our study finds clear Na and O star-to-star abundance variations in all GCs.
Variations in Al are present in all but a few GCs. Finally, a spread in
abundances of Mg and Si are also present in a few clusters. Mg is slightly less
overabundant and Si slightly more overabundant in the most Al-rich stars. The
correlation between Si and Al abundances is a signature of production of 28Si
leaking from the Mg-Al cycle in a few clusters. The cross sections required for
the proper reactions to take over in the cycle point to temperatures in excess
of about 65 MK for the favoured site of production. We used a dilution model to
infer the total range of Al abundances starting from the Al abundances in the
UVES spectra, and the Na abundance distributions found from analysis of the
much larger set of stars for which GIRAFFE spectra were available. We found
that the maximum amount of additional Al produced by first generation polluters
contributing to the composition of the second generation stars in each cluster
is closely correlated with the same combination of metallicity and cluster
luminosity that reproduced the minimum O abundances found from GIRAFFE spectra.
We then suggest that the high temperatures required for the Mg-Al cycle are
only reached in the most massive and most metal-poor polluters.Comment: 20 pages, 13 figures, fig. 3 degraded. Accepted for publication on
Astronomy and Astrophysic
The link between chemical anomalies along the red giant branch and the horizontal branch extension in globular clusters
We find a strong correlation between the extension of the Na-O
anticorrelation observed in red giant branch (RGB) stars and the high
temperature extension of the horizontal branch (HB) blue tails of Galactic
globular clusters (GCs). The longer is the O-depleted tail of the Na-O
anticorrelation observed in the RGB stars, the higher is the maximum
temperature reached by the bluest HB stars in the GC. This result provides a
clear, empirical evidence of a link between the extension of the HB and the
presence of star-to-star abundance variations of proton-capture elements in GC
stars. We discuss the possible interpretation of this correlation.Comment: Comments: 6 pages, 1 figure, uses emulateapj.cls; accepted for
publication in the Astrophysical Journal Letter
Nucleosynthesis in Type II supernovae and the abundances in metal-poor stars
We explore the effects on nucleosynthesis in Type II supernovae of various
parameters (mass cut, neutron excess, explosion energy, progenitor mass) in
order to explain the observed trends of the iron-peak element abundance ratios
([Cr/Fe], [Mn/Fe], [Co/Fe] and [Ni/Fe]) in halo stars as a function of
metallicity for the range [Fe/H] . [Cr/Fe] and [Mn/Fe]
decrease with decreasing [Fe/H], while [Co/Fe] behaves the opposite way and
increases. We show that such a behavior can be explained by a variation of mass
cuts in Type II supernovae as a function of progenitor mass, which provides a
changing mix of nucleosynthesis from an alpha-rich freeze-out of Si-burning and
incomplete Si-burning. This explanation is consistent with the amount of
ejected Ni determined from modeling the early light curves of individual
supernovae. We also suggest that the ratio [H/Fe] of halo stars is mainly
determined by the mass of interstellar hydrogen mixed with the ejecta of a
single supernova which is larger for larger explosion energy and the larger
Str\"omgren radius of the progenitor.Comment: 17 pages, LaTeX, Accepted for publication in the Astrophysical
Journal, more discussion on the Galactic chemical evolutio
- âŠ