40 research outputs found

    A method for predicting the rate and effect of approach to the stall of a microlight aeroplane

    Get PDF
    The stall and immediately post-stall behaviour of a microlight aeroplane are shown to be a function of the deceleration rate prior to the stall; therefore, it is necessary to use a representative deceleration rate when determining the acceptability of stall and post-stall handling qualities. This research has found means by which the range of deceleration rates likely to be seen in a particular type can be estimated, so that flight test programmes can ensure these rates are included, and thus aircraft are confirmed to have acceptable stalling characteristics. Recommendations are made towards the use of this research for all aircraft type, and of further work which might usefully be carried out

    Loss of control testing of light aircraft and a cost effective approach to flight test

    Get PDF
    Copyright @ The Society of Flight Test EngineersLoss of control in Visual Meteorological Conditions (VMC) is the most common cause of fatal accidents involving light aircraft in the UK and probably worldwide. Understanding why LoC events occur and why there are apparent differences between aircraft types is currently under investigation by Brunel Flight Safety Laboratory (BFSL). Using a case study approach for selected light aircraft used in the training environment and based upon a 29 year study of UK fatal accidents, BFSL undertook a qualitative and quantitative review of fatal stall/spin accidents using a combination of statistical and qualitative analysis. Aircraft/model design differences and published material were reviewed with respect to performance and handling qualities for possible clues, and informal interviews were conducted with type-experienced students, pilots and flying instructors. A flight test programme was executed using multiple examples (for fleet-wide attributes) of aircraft models to enable assessment and comparison of flying qualities (both qualitatively and quantitatively). Working within the continuous budget constraints of academia, a creative and cost effective flight test programme was developed without compromising safety. The two-man team (TP & FTE) used standard (unmodified) flying club and syndicate aircraft in conjunction with non-invasive low cost flight test instrumentation. Tests included apparent longitudinal (static and dynamic) stability and control characteristics, stall and low-speed handling characteristics and cockpit ergonomics / pilot workload. During this programme, adaptations were also made to the classic Cooper-Harper “point tracking” method towards a “boundary avoidance” method. The paper describes tools and techniques used, research findings, the team's lessons learned and proposed future research. It also discusses the possible application of research results in aircraft, pilot and environmental causal factors, enabling a better understanding of LoC incidents and future avoidance within the light aircraft community.Financial support from the Thomas Gerald Gray Charitable Trust Research Scholarship Scheme was used in this study

    Towards the tumble resistant microlight

    Get PDF
    The tumble mode is a pitching departure from controlled flight which leads to a pitch autorotation that is generally unrecoverable – resulting in vertical ground impact, usually preceded by in-flight breakup (the mechanism for which, surprisingly, can sometimes prevent loss of life). This was identified in work led by the British Microlight Aircraft Association beginning in 1997 as a response to a number of fatal accidents in Rogallo winged microlight aeroplanes, although the tumble is also known to occur to hang-gliders. This paper explains how this class of aeroplane is controlled, and how it has been found that they can enter the tumble mode. The mechanism by which the tumble can be entered is described. This has led to work showing how flight testing can be used to establish and demonstrate resistance to tumble entry – particularly important with increasing number of very high performance flexwings. These flight tests will be explained, together with the significance of the results. Recent accident investigation work has also shown a new mechanism of tumble entry, through partial failure of the A-frame structure and the pitch-trimmer mechanism. Also described is a possible relevance to well known historical accidents to flying wing aeroplanes – specifically the YB-49 and dH-108, and discovered data on the characteristics of the BKB-1 flying wing glider; are also described
    corecore