471 research outputs found

    The Chemical Compositions of the SRd Variable Stars-- II. WY Andromedae, VW Eridani, and UW Librae

    Full text link
    Chemical compositions are derived from high-resolution spectra for three stars classed as SRd variables in the General Catalogue of Variable Stars. These stars are shown to be metal-poor supergiants: WY And with [Fe/H] = -1.0, VW Eri with [Fe/H] = -1.8, and UW Lib with [Fe/H] = -1.2. Their compositions are identical to within the measurement errors with the compositions of subdwarfs, subgiants, and less evolved giants of the same FeH. The stars are at the tip of the first giant branch or in the early stages of evolution along the asymptotic giant branch (AGB). There is no convincing evidence that these SRd variables are experiencing thermal pulsing and the third dredge-up on the AGB. The SRds appear to be the cool limit of the sequence of RV Tauri variables.Comment: 14 pages, 1 figure, 4 table

    Use of the Strengths & Difficulties Questionnaire to identify treatment needs in looked after children referred to CAMHS

    Get PDF
    © The Author(s) 2019Background: In England and Wales, the Strengths & Difficulties Questionnaire (SDQ) is used to assess and monitor looked after children’s (LAC) mental health; and some targeted CAMHS teams use it to decide who can access services. However, the ability of the single-informant SDQ to identify LAC who need mental health treatment is insufficiently understood. Methods: 144 LAC referrals to a Targeted CAMHS Team were screened as part of a larger study. To establish how well the SDQ identified children who required treatment, Total Difficulties Scores (TDS) from single-informant SDQs submitted at referral were compared to treatment recommendations following routine CAMHS assessment in a real-world setting. To explain the results, clinicians (n=9) from the team were interviewed and key themes identified using Thematic Analysis. Results: Optimal accuracy calculations for SDQs completed by carers (TDS=17, sensitivity .67, specificity .57), teachers (TDS=17, sensitivity .79, specificity .71) and young people (TDS=14, sensitivity.79, specificity .42) compared to the outcome of routine CAMHS assessments indicated that the number of children whose treatment needs were not identified by their SDQ score may be unacceptably high. Key themes from clinician interviews identified possible gaps and limitations: Developmental Trauma and Attachment Difficulties, A different kind of ‘patient?’, Seeing the bad but neglecting the sad, and The importance of clinical judgement. Conclusions: Contrary to UK Government policy, this study suggests that the single-report SDQ should not be relied upon as a sole means of identifying mental health difficulties in this vulnerable, high-risk population.Peer reviewedFinal Accepted Versio

    Syncrip/hnRNP Q is required for activity-induced Msp300/Nesprin-1 expression and new synapse formation.

    Get PDF
    Memory and learning involve activity-driven expression of proteins and cytoskeletal reorganization at new synapses, requiring posttranscriptional regulation of localized mRNA a long distance from corresponding nuclei. A key factor expressed early in synapse formation is Msp300/Nesprin-1, which organizes actin filaments around the new synapse. How Msp300 expression is regulated during synaptic plasticity is poorly understood. Here, we show that activity-dependent accumulation of Msp300 in the postsynaptic compartment of the Drosophila larval neuromuscular junction is regulated by the conserved RNA binding protein Syncrip/hnRNP Q. Syncrip (Syp) binds to msp300 transcripts and is essential for plasticity. Single-molecule imaging shows that msp300 is associated with Syp in vivo and forms ribosome-rich granules that contain the translation factor eIF4E. Elevated neural activity alters the dynamics of Syp and the number of msp300:Syp:eIF4E RNP granules at the synapse, suggesting that these particles facilitate translation. These results introduce Syp as an important early acting activity-dependent regulator of a plasticity gene that is strongly associated with human ataxias

    Heavy element abundances in giant stars of the globular clusters M4 and M5

    Full text link
    We present a comprehensive abundance analysis of 27 heavy elements in bright giant stars of the globular clusters M4 and M5 based on high resolution, high signal-to-noise ratio spectra obtained with the Magellan Clay Telescope. We confirm and expand upon previous results for these clusters by showing that (1) all elements heavier than, and including, Si have constant abundances within each cluster, (2) the elements from Ca to Ni have indistinguishable compositions in M4 and M5, (3) Si, Cu, Zn, and all s-process elements are approximately 0.3 dex overabundant in M4 relative to M5, and (4) the r-process elements Sm, Eu, Gd, and Th are slightly overabundant in M5 relative to M4. The cluster-to-cluster abundance differences for Cu and Zn are intriguing, especially in light of their uncertain nucleosynthetic origins. We confirm that stars other than Type Ia supernovae must produce significant amounts of Cu and Zn at or below the clusters' metallicities. If intermediate-mass AGB stars or massive stars are responsible for the Cu and Zn enhancements in M4, the similar [Rb/Zr] ratios and (preliminary) Mg isotope ratios in both clusters may be problematic for either scenario. For the elements from Ba to Hf, we assume that the s- and r-process contributions are scaled versions of the solar s- and r-process abundances. We quantify the relative fractions of s- and r-process material for each cluster and show that they provide an excellent fit to the observed abundances.Comment: Accepted for publication in Ap

    Rubidium and lead abundances in giant stars of the globular clusters M 13 and NGC 6752

    Full text link
    We present measurements of the neutron-capture elements Rb and Pb in five giant stars of the globular cluster NGC 6752 and Pb measurements in four giants of the globular cluster M 13. The abundances were derived by comparing synthetic spectra with high resolution, high signal-to-noise ratio spectra obtained using HDS on the Subaru telescope and MIKE on the Magellan telescope. The program stars span the range of the O-Al abundance variation. In NGC 6752, the mean abundances are [Rb/Fe] = -0.17 +/- 0.06 (sigma = 0.14), [Rb/Zr] = -0.12 +/- 0.06 (sigma = 0.13), and [Pb/Fe] = -0.17 +/- 0.04 (sigma = 0.08). In M 13 the mean abundance is [Pb/Fe] = -0.28 +/- 0.03 (sigma = 0.06). Within the measurement uncertainties, we find no evidence for a star-to-star variation for either Rb or Pb within these clusters. None of the abundance ratios [Rb/Fe], [Rb/Zr], or [Pb/Fe] are correlated with the Al abundance. NGC 6752 may have slightly lower abundances of [Rb/Fe] and [Rb/Zr] compared to the small sample of field stars at the same metallicity. For M 13 and NGC 6752 the Pb abundances are in accord with predictions from a Galactic chemical evolution model. If metal-poor intermediate-mass asymptotic giant branch stars did produce the globular cluster abundance anomalies, then such stars do not synthesize significant quantities of Rb or Pb. Alternatively, if such stars do synthesize large amounts of Rb or Pb, then they are not responsible for the abundance anomalies seen in globular clusters.Comment: Accepted for publication in Ap

    Carbon and Strontium Abundances of Metal-Poor Stars

    Full text link
    We present carbon and strontium abundances for 100 metal-poor stars measured from R\sim 7000 spectra obtained with the Echellette Spectrograph and Imager at the Keck Observatory. Using spectral synthesis of the G-band region, we have derived carbon abundances for stars ranging from [Fe/H]=1.3=-1.3 to [Fe/H]=3.8=-3.8. The formal errors are 0.2\sim 0.2 dex in [C/Fe]. The strontium abundance in these stars was measured using spectral synthesis of the resonance line at 4215 {\AA}. Using these two abundance measurments along with the barium abundances from our previous study of these stars, we show it is possible to identify neutron-capture-rich stars with our spectra. We find, as in other studies, a large scatter in [C/Fe] below [Fe/H]=2 = -2. Of the stars with [Fe/H]<2<-2, 9±\pm4% can be classified as carbon-rich metal-poor stars. The Sr and Ba abundances show that three of the carbon-rich stars are neutron-capture-rich, while two have normal Ba and Sr. This fraction of carbon enhanced stars is consistent with other studies that include this metallicity range.Comment: ApJ, Accepte

    Comparison of “Look-Alike” Implant Prosthetic Retaining Screws

    Full text link
    : The maximum preload torque of implant prosthetic retaining screws from four manufacturers and of two alloy types was measured to determine one index of interchangeability of intersystem components. Materials and Methods : Implant prosthetic retaining screws from four manufacturers (3i Implant Innovations Inc, West Palm Beach, FL; Impla-Med Inc, Sunrise, FL; Nobelpharma USA Inc, Chicago, IL; and Implant Support Systems Inc, Irvine, CA) and of two metal types (gold and titanium) were investigated using an in vitro simulation model. Five screws of each type were tightened down against a gold cylinder using a Tohnichi BTG-6 torque gauge (Tohnichi American Corporation, Northbrook, IL) until fracture occurred. Results : The 3i Implant Innovations gold and the Nobelpharma gold were not significantly different. The 3i Implant Innovations titanium and the Impla-Med gold were able to withstand less preload torque than the 3i Implant Innovations gold and the Nobelpharma gold. The Implant Support Systems titanium was able to withstand significantly more preload torque than all of the other screws. Conclusions : Interchanging implant prosthetic retaining screws could introduce new and unknown variables that may affect the long-term survival of implant fixtures and/or the implant prostheses.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/74593/1/j.1532-849X.1995.tb00310.x.pd

    A conjugate gradient like method for p-norm minimization in functional spaces.

    Get PDF
    We develop an iterative algorithm to recover the minimum p-norm solution of the functional linear equation Ax=b, where A:X⟶Y is a continuous linear operator between the two Banach spaces X=Lp, 11, with x∈X and b∈Y. The algorithm is conceived within the same framework of the Landweber method for functional linear equations in Banach spaces proposed by Schöpfer et al. (Inverse Probl 22:311–329, 2006). Indeed, the algorithm is based on using, at the n-th iteration, a linear combination of the steepest current “descent functional” A∗J(b−Axn) and the previous descent functional, where J denotes a duality map of the Banach space Y. In this regard, the algorithm can be viewed as a generalization of the classical conjugate gradient method on the normal equations in Hilbert spaces. We demonstrate that the proposed iterative algorithm converges strongly to the minimum p-norm solution of the functional linear equation Ax=b and that it is also a regularization method, by applying the discrepancy principle as stopping rule. According to the geometrical properties of Lp spaces, numerical experiments show that the method is fast, robust in terms of both restoration accuracy and stability, promotes sparsity and reduces the over-smoothness in reconstructing edges and abrupt intensity changes

    The Interstellar Rubidium Isotope Ratio toward Rho Ophiuchi A

    Full text link
    The isotope ratio, 85Rb/87Rb, places constraints on models of the nucleosynthesis of heavy elements, but there is no precise determination of the ratio for material beyond the Solar System. We report the first measurement of the interstellar Rb isotope ratio. Our measurement of the Rb I line at 7800 A for the diffuse gas toward rho Oph A yields a value of 1.21 +/- 0.30 (1-sigma) that differs significantly from the meteoritic value of 2.59. The Rb/K elemental abundance ratio for the cloud also is lower than that seen in meteorites. Comparison of the 85Rb/K and 87Rb/K ratios with meteoritic values indicates that the interstellar 85Rb abundance in this direction is lower than the Solar System abundance. We attribute the lower abundance to a reduced contribution from the r-process. Interstellar abundances for Kr, Cd, and Sn are consistent with much less r-process synthesis for the solar neighborhood compared to the amount inferred for the Solar System.Comment: 12 pages with 2 figures and 1 table; will appear in ApJ Letter

    Rubidium and lead abundances in giant stars of the globular clusters M4 and M5

    Get PDF
    We present measurements of the neutron-capture elements Rb and Pb for bright giants in the globular clusters M4 and M5. The clusters are of similar metallicity ([Fe/H] = -1.2) but M4 is decidedly s-process enriched relative to M5: [Ba/Fe] = +0.6 for M4 but 0.0 for M5. The Rb and Pb abundances were derived by comparing synthetic spectra with high-resolution, high signal-to-noise ratio spectra obtained with MIKE on the Magellan telescope. Abundances of Y, Zr, La, and Eu were also obtained. In M4, the mean abundances from 12 giants are [Rb/Fe] = 0.39 +/- 0.02 (sigma = 0.07), [Rb/Zr] = 0.17 +/- 0.03 (sigma = 0.08), and [Pb/Fe] = 0.30 +/- 0.02 (sigma = 0.07). In M5, the mean abundances from two giants are [Rb/Fe] = 0.00 +/- 0.05 (sigma = 0.06), [Rb/Zr] = 0.08 +/- 0.08 (sigma = 0.11), and [Pb/Fe] = -0.35 +/- 0.02 (sigma = 0.04). Within the measurement uncertainties, the abundance ratios [Rb/Fe], [Pb/Fe] and [Rb/X] for X = Y, Zr, La are constant from star-to-star in each cluster and none of these ratios are correlated with O or Na abundances. While M4 has a higher Rb abundance than M5, the ratios [Rb/X] are similar in both clusters indicating that the nature of the s-products are very similar for each cluster but the gas from which M4's stars formed had a higher concentration of these products.Comment: Accepted for publication in Ap
    corecore