7,588 research outputs found

    Super Background Field Method for N=2 SYM

    Full text link
    The implementation of the Background Field Method (BFM) for quantum field theories is analysed within the Batalin-Vilkovisky (BV) formalism. We provide a systematic way of constructing general splittings of the fields into classical and quantum parts, such that the background transformations of the quantum fields are linear in the quantum variables. This leads to linear Ward-Takahashi identities for the background invariance and to great simplifications in multiloop computations. In addition, the gauge fixing is obtained by means of (anti)canonical transformations generated by the gauge-fixing fermion. Within this framework we derive the BFM for the N=2 Super-Yang-Mills theory in the Wess-Zumino gauge viewed as the twisted version of Donaldson-Witten topological gauge theory. We obtain the background transformations for the full BRST differential of N=2 Super-Yang-Mills (including gauge transformations, SUSY transformations and translations). The BFM permits all observables of the supersymmetric theory to be identified easily by computing the equivariant cohomology of the topological theory. These results should be regarded as a step towards the construction of a super BFM for the Minimal Supersymmetric Standard Model.Comment: 34 pages, Latex, JHEP3.cl

    The Algebraic Method

    Get PDF
    Combining the effect of an intermediate renormalization prescription (zero momentum subtraction) and the background field method (BFM), we show that the algebraic renormalization procedure needed for the computation of radiative corrections within non-invariant regularization schemes is drastically simplified. The present technique is suitable for gauge models and, here, is applied to the Standard Model. The use of the BFM allows a powerful organization of the counterterms and avoids complicated Slavnov-Taylor identities. Furthermore, the Becchi-Rouet-Stora-Tyutin (BRST) variation of background fields plays a special role in disentangling Ward-Takahashi identities (WTI) and Slavnov-Taylor identities (STI). Finally, the strategy to be applied to physical processes is exemplified for the process bsγb\to s\gamma.Comment: Latex, 38 page

    Chemical complexity in astrophysical simulations: optimization and reduction techniques

    Full text link
    Chemistry has a key role in the evolution of the interstellar medium (ISM), so it is highly desirable to follow its evolution in numerical simulations. However, it may easily dominate the computational cost when applied to large systems. In this paper we discuss two approaches to reduce these costs: (i) based on computational strategies, and (ii) based on the properties and on the topology of the chemical network. The first methods are more robust, while the second are meant to be giving important information on the structure of large, complex networks. To this aim we first discuss the numerical solvers for integrating the system of ordinary differential equations (ODE) associated with the chemical network. We then propose a buffer method that decreases the computational time spent in solving the ODE system. We further discuss a flux-based method that allows one to determine and then cut on the fly the less active reactions. In addition we also present a topological approach for selecting the most probable species that will be active during the chemical evolution, thus gaining information on the chemical network that otherwise would be difficult to retrieve. This topological technique can also be used as an a priori reduction method for any size network. We implemented these methods into a 1D Lagrangian hydrodynamical code to test their effects: both classes lead to large computational speed-ups, ranging from x2 to x5. We have also tested some hybrid approaches finding that coupling the flux method with a buffer strategy gives the best trade-off between robustness and speed-up of calculations.Comment: accepted for publication in MNRA

    A test of the Suyama-Yamaguchi inequality from weak lensing

    Get PDF
    We investigate the weak lensing signature of primordial non-Gaussianities of the local type by constraining the magnitude of the weak convergence bi- and trispectra expected for the EUCLID weak lensing survey. Starting from expressions for the weak convergence spectra, bispectra and trispectra, whose relative magnitudes we investigate as a function of scale, we compute their respective signal to noise ratios by relating the polyspectra's amplitude to their Gaussian covariance using a Monte-Carlo technique for carrying out the configuration space integrations. In computing the Fisher-matrix on the non-Gaussianity parameters f_nl, g_nl and tau_nl with a very similar technique, we can derive Bayesian evidences for a violation of the Suyama-Yamaguchi relation tau_nl>=(6 f_nl/5)^2 as a function of the true f_nl and tau_nl-values and show that the relation can be probed down to levels of f_nl~10^2 and tau_nl~10^5. In a related study, we derive analytical expressions for the probability density that the SY-relation is exactly fulfilled, as required by models in which any one field generates the perturbations. We conclude with an outlook on the levels of non-Gaussianity that can be probed with tomographic lensing surveys

    Dark-matter halo mergers as a fertile environment for low-mass Population III star formation

    Full text link
    While Population III stars are typically thought to be massive, pathways towards lower-mass Pop III stars may exist when the cooling of the gas is particularly enhanced. A possible route is enhanced HD cooling during the merging of dark-matter halos. The mergers can lead to a high ionization degree catalysing the formation of HD molecules and may cool the gas down to the cosmic microwave background (CMB) temperature. In this paper, we investigate the merging of mini-halos with masses of a few 105^5 M_\odot and explore the feasibility of this scenario. We have performed three-dimensional cosmological hydrodynamics calculations with the ENZO code, solving the thermal and chemical evolution of the gas by employing the astrochemistry package KROME. Our results show that the HD abundance is increased by two orders of magnitude compared to the no-merging case and the halo cools down to \sim60 K triggering fragmentation. Based on Jeans estimates the expected stellar masses are about 10 M_\odot. Our findings show that the merging scenario is a potential pathway for the formation of low-mass stars.Comment: Submitted to MNRA

    Fluctuation of the Initial Conditions and Its Consequences on Some Observables

    Full text link
    We show effects of the event-by-event fluctuation of the initial conditions (IC) in hydrodynamic description of high-energy nuclear collisions on some observables. Such IC produce not only fluctuations in observables but, due to their bumpy structure, several non-trivial effects appear. They enhance production of isotropically distributed high-pT particles, making v2 smaller there. Also, they reduce v2 in the forward and backward regions where the global matter density is smaller, so where such effects become more efficacious. They may also produce the so-called ridge effect in the two large-pT particle correlation.Comment: 6 pages, 6 figures, presented at the IV Workshop on Particle Correlations and Femtoscopy (WPCF2008), Krakow, Poland, 11-14 Sep 200

    NeXSPheRIO results on elliptic flow at RHIC and connection with thermalization

    Full text link
    Elliptic flow at RHIC is computed event-by-event with NeXSPheRIO. Reasonable agreement with experimental results on v2(η)v_2(\eta) is obtained. Various effects are studied as well: reconstruction of impact parameter direction, freeze out temperature, equation of state (with or without crossover), emission mecanism.Comment: Contribution to the Proceedings of the Quark-Gluon Plasma Thermalization workshop. Content slightly increase
    corecore