3 research outputs found

    Sampling properties of directed networks

    Full text link
    For many real-world networks only a small "sampled" version of the original network may be investigated; those results are then used to draw conclusions about the actual system. Variants of breadth-first search (BFS) sampling, which are based on epidemic processes, are widely used. Although it is well established that BFS sampling fails, in most cases, to capture the IN-component(s) of directed networks, a description of the effects of BFS sampling on other topological properties are all but absent from the literature. To systematically study the effects of sampling biases on directed networks, we compare BFS sampling to random sampling on complete large-scale directed networks. We present new results and a thorough analysis of the topological properties of seven different complete directed networks (prior to sampling), including three versions of Wikipedia, three different sources of sampled World Wide Web data, and an Internet-based social network. We detail the differences that sampling method and coverage can make to the structural properties of sampled versions of these seven networks. Most notably, we find that sampling method and coverage affect both the bow-tie structure, as well as the number and structure of strongly connected components in sampled networks. In addition, at low sampling coverage (i.e. less than 40%), the values of average degree, variance of out-degree, degree auto-correlation, and link reciprocity are overestimated by 30% or more in BFS-sampled networks, and only attain values within 10% of the corresponding values in the complete networks when sampling coverage is in excess of 65%. These results may cause us to rethink what we know about the structure, function, and evolution of real-world directed networks.Comment: 21 pages, 11 figure

    A Novel Approach to Discontinuous Bond Percolation Transition

    Full text link
    We introduce a bond percolation procedure on a DD-dimensional lattice where two neighbouring sites are connected by NN channels, each operated by valves at both ends. Out of a total of NN, randomly chosen nn valves are open at every site. A bond is said to connect two sites if there is at least one channel between them, which has open valves at both ends. We show analytically that in all spatial dimensions, this system undergoes a discontinuous percolation transition in the NN\to \infty limit when γ=lnnlnN\gamma =\frac{\ln n}{\ln N} crosses a threshold. It must be emphasized that, in contrast to the ordinary percolation models, here the transition occurs even in one dimensional systems, albeit discontinuously. We also show that a special kind of discontinuous percolation occurs only in one dimension when NN depends on the system size.Comment: 6 pages, 6 eps figure

    Exact solutions for mass-dependent irreversible aggregations

    Get PDF
    We consider the mass-dependent aggregation process (k + 1) X -> X, given a fixed number of unit mass particles in the initial state. One cluster is chosen proportional to its mass and is merged into one, either with k neighbors in one dimension, or-in the well-mixed case-with k other clusters picked randomly. We find the same combinatorial exact solutions for the probability to find any given configuration of particles on a ring or line, and in the well-mixed case. The mass distribution of a single cluster exhibits scaling laws and the finite-size scaling form is given. The relation to the classical sum kernel of irreversible aggregation is discussed
    corecore