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Exact solutions for mass-dependent irreversible aggregations
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We consider the mass-dependent aggregation process (k + 1)X → X, given a fixed number of unit mass
particles in the initial state. One cluster is chosen proportional to its mass and is merged into one, either with
k neighbors in one dimension, or—in the well-mixed case—with k other clusters picked randomly. We find the
same combinatorial exact solutions for the probability to find any given configuration of particles on a ring or
line, and in the well-mixed case. The mass distribution of a single cluster exhibits scaling laws and the finite-size
scaling form is given. The relation to the classical sum kernel of irreversible aggregation is discussed.
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Recently the theory of irreversible aggregation was revis-
ited in view of renormalization of complex networks [1].
In Ref. [1], a simple mapping between random sequential
renormalization (RSR) [2,3] and irreversible aggregation [4]
was pointed out, where a local random renormalization step to
produce a new “supernode” in complex networks corresponds
to one aggregation event of “molecules.” Exact combinatorial
analyses, both in one dimension (without diffusion) and in the
well-mixed case, gave the same scaling law of cluster mass
distribution. The corresponding exponent only depends on k,
the number of interacting neighbors [1]. This RSR procedure
corresponds to the “constant” kernel of irreversible aggrega-
tion (one of three well-known “classical” kernels—constant,
sum, and product kernels [4]). In this Rapid Communication,
we show the relation between mass-dependent RSR and
irreversible aggregation with the sum kernel. Applying the
same combinatorial technique of Ref. [1], we find the exact
solutions for mass-dependent irreversible aggregation as well.

Here we consider models governed by the reaction
(k + 1)X → X, where a cluster is picked randomly, in
proportion to its mass, after which it coalesces with k other
clusters. In the case of one-dimensional models these are k

neighbors, while they are k other clusters chosen randomly
in the case of well-mixed systems. In both cases, the other
clusters are chosen independent of their masses. The mass of
the newly formed cluster is the sum of the (k + 1) masses. For
one-dimensional models, both a ring with periodic boundary
condition and a line with open boundary condition are
considered. Reactions are allowed only if there is a sufficient
number k of available clusters.

First, let us consider the model defined on a “ring.” Initially,
N0 particles of unit mass (m = 1) are placed on ringlike beads
(see Fig. 1). Each particle is labeled by i ∈ [1, . . . ,N0]. At
each time, one cluster is picked in proportion to its mass,
and is subsequently merged with its k right neighbors into
one big cluster having a mass equal to the sum of the
(k + 1) masses. Cluster masses are therefore restricted to
m ≡ 1(mod k). This can be written as m − 1 = ks, where s

is the number of aggregation events needed to make a cluster
of mass m. Similarly the number of clusters at any time t is
given by N = N0 − kt , where time t is denoted by positive
integers representing the total number of aggregation events.
We do not allow two events to happen simultaneously in this

study. Otherwise they can happen either at regular intervals,
intermittently, or according to a Poisson process.

To find the probability that any of the N clusters picked at
random has mass m resulting from s aggregation events, we
follow an approach similar to the one introduced in Ref. [1].
The crucial observation that makes the analysis simple is
that picking clusters according to their mass is equivalent to
picking sites with uniform probability, since a cluster of mass
m occupies m sites. Let i be any site (e.g., i = 1), and let
π

N0
N (m) be the probability that a cluster of mass m starts at

this site and occupies the sites (i,i + 1, . . . ,i + m − 1). The
probability that any of the N clusters picked at random has
mass m after t events is then

p
N0
N (m) = N0

N
π

N0
N (m), (1)

and

π
N0
N (m) =

(
t

s

)
nclusternrest

ntotal
, (2)

where ncluster is the number of possible histories of aggregation
events (i1,i2, . . . ,is) leading to a cluster of mass m, nrest is the
number of possible ways to form the other (N − 1) clusters,
and ntotal is the total number of histories for t merging events.

The binomial coefficient ( t
s ) corresponds to the number of

choices associated with different time orderings for the s events
in the cluster of mass m and the (t − s) events in the rest of
the clusters.

The total number of all histories involving t events is simply

ntotal = Nt
0. (3)

This is to be contrasted to the number of histories n
[1,N0]
N that

lead to the first cluster starting at i = 1 and the N th ending at
N0. A somewhat more involved argument gives

n
[1,N0]
N = NNt−1

0 . (4)

The number of histories leading to a single cluster of mass m

covering the sites of interval [1,m] is thus

ncluster = n
[1,m]
1 = ms−1, (5)

while

nrest = n
[1,N0−m]
N−1 = (N − 1)(N0 − m)t−s−1. (6)
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FIG. 1. (Color online) Illustration of aggregation on a ring with
k = 2, N0 = 24, and N = 6. The tree in color corresponds to a
cluster of mass m = 7. It has seven leaves (red/light gray) and three
internal nodes (blue/dark gray). The numbers beside internal nodes
correspond to the time when coalescence occurs.

Combining Eqs. (1)–(6), we finally obtain

p
N0
N (m) = N − 1

N

(
t

s

)
ms−1(N0 − m)t−s−1

Nt−1
0

. (7)

For this mass-dependent aggregation process, we can also
work out the joint probability distributions for masses of
adjacent clusters. We denote by p

N0
N (m1,m2) the probability

to find a cluster of mass m1 followed immediately to the right
by a cluster of mass m2. This is nonzero only if m1 = ks1 + 1
and m2 = ks2 + 1, where sα is the number of aggregation
events needed to form a cluster of mass mα . By the previous
arguments, we get

p
N0
N (m1,m2) = N − 2

N

(
t

s0,s1,s2

)
m

s1−1
1 m

s2−1
2 m

s0−1
0

Nt−1
0

,

where s0 = t − ∑α
β=1 sβ and m0 = N0 − ∑α

β=1 mβ . It is
interesting to note that this joint probability properly holds
the following relation:

p
N0
N (m1,m2) = p

N0
N (m1)pN0−m1

N−1 (m2).

For any 1 � α � N − 1, the joint probability distribution
for α consecutive adjacent clusters is given by

p
N0
N (m1, . . . ,mα) = N − α

N

T [t,{s},α + 1]
∏α

β=0 m
sβ−1
β

Nt−1
0

, (8)

where we used the multinomial coefficient

T [t,{s},α + 1] =
(

t

s0, . . . ,sα

)
.

In particular, this can be done for the joint distribution for
all N masses by setting α = N − 1. The resulting expression
is always invariant under any permutations of N numbers
(m1, . . . ,mN ), as was the case with mass-independent aggre-
gation [1]. Hence the N -cluster probability is independent
of the spatial ordering of the clusters. Therefore, there are no
spatial correlations, even though there are obvious correlations
between the masses at any given time. For this reason [and as
verified in detail using Eq. (4) instead of Eq. (3)], the joint
probability for N masses on a line, i.e., a one-dimensional
system with open boundaries, is also given as Eq. (8), showing
that the two models lead to the same statistics for any α.

The absence of spatial correlations indicates that the same
dynamics might also result from the well-mixed case. To check
this, we now start with a bucket containing N0 balls, each of
unit mass. An event consists of first picking one ball with
probability proportional to its mass and then choosing k balls
out of the bucket, independent of their masses. The balls are
merged and a new ball, having a mass equal the sum of the
masses of its (k + 1) constituents, is returned to the bucket.
This process repeats until N clusters remain.

The single-cluster mass distribution for the well-mixed
model can be obtained using the same strategy as before.
Since events now correspond to choosing one ball with a
mass-weighted probability, and k balls out of (N0 − kt − 1)
balls randomly, we have a t power of N0 and a product of
binomial coefficients

ntotal = N0

(
N0 − 1

k

)
· · · N0

(
N + k − 1

k

)

= Nt
0

(k!)t
(N0 − 1)!

(N − 1)!
= Nt−1

0

(k!)t
N0!

(N − 1)!
. (9)

The expressions for ncluster and nrest are analogously

ncluster = ms−1

(k!)s
m!, (10)

nrest = (N0 − m)t−s−1

(k!)t−s

(N0 − m)!

(N − 2)!
. (11)

The number of time orderings is exactly the same as before, but

the first factor N0/N in Eq. (1) has to be replaced by 1
N

( N0
m ).

Putting all these considerations together, many cancellations
take place, leading exactly to Eq. (7) again. This argument can
be similarly extended to get the full N -particle distribution
function, obtaining exactly the same result as Eq. (8) for any
k and α.

Let us look at the characteristics of the solutions. Even
though the composition principle is the same as that of
mass-independent aggregation in Ref. [1], the final solution
and the characteristics are quite different. First, cluster size
distributions at several different times are shown in Fig. 2
for N0 = 100 and k = 2. The symbols indicate the numerical
simulation results over 106 realizations and the solid lines are
the exact solutions of Eq. (7). The tail region corresponding
to large cluster sizes changes from a fast exponential decay to
an increasing power law as the merging process approaches
termination. The turning point is at N ∼ √

N0. When N = 2,
since the sum of the two cluster sizes is always N0,
the distribution p

N0
N (m) is symmetric under the exchange
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FIG. 2. (Color online) Cluster size distributions after t = 49
(N = 2) events for k = 2, for different values of N averaged over
106 realizations compared to exact results. The power-law slope of
small m is −3/2 independent of k. The large size behavior changes
from an increasing power law to a decreasing one at N ∼ √

N0. The
inset shows the symmetric distribution for N = 2.

m ↔ N0 − m for any k. The symmetric distribution for N = 2
is shown in the inset of the Fig. 2.

When N0 → ∞, asymptotic power laws can be determined
using Stirling’s formula. If N is fixed and both m and
(N0 − m) → ∞, one obtains the scaling form

p
N0
N (m) ∼ N

− 3
2

0

[
m

N0

(
1 − m

N0

)]− 3
2

e
− N2

kN0
m
N0

(1− m
N0

)−1

∼ N
− 3

2
0 f

(
m

N0
,

N√
N0

)
. (12)

For small masses, this gives a decreasing power law, with
exponent −3/2, independent of k. Interestingly, this is very
different from mass-independent aggregation, for which the
analogous exponent depends on k and is equal to −1 + 1/k [1].
The exponent −3/2 is the same as that for the aggregation
with the sum kernel of the irreversible aggregation obtained in
Ref. [5]. Indeed, the rate equation for the current aggregation
model in mean-field theory is the same as for the sum kernel
[4,5]. For the k = 1 case, the rate equation is simply

�pm =
m∑

m′=1

m′pm′pm−m′ − pm

∞∑
m′=1

(m + m′)pm′

= m

2

m∑
m′=1

pm′pm−m′ − (m + m̄)pm, (13)

where pm denotes p
N0
N (m) to make the equation more concise,

and where m̄ means the mean cluster size. Equation (13) is
the same as the rate equation for the sum kernel in Refs. [4]
and [5]. The behavior for large m is different, however, and is
not described by mean-field theory.

According to Eq. (12), N
3
2

0 p
N0
N (m) should be a function of

m/N0 only for fixed

y = N2

kN0
(14)

FIG. 3. (Color online) Finite-size scaling collapses for different
y and fixed k = 2. Collapse lines for y = 0.2 and y = 1.0 are shifted
up and down to make them distinguishable from other collapse lines.

and for N 
 N0,N0 − m. The resulting data collapse is shown
in Fig. 3, where we also factored out a power of m/N0 to make
the curves less steep. Notice that N and N0 are related by
N ≡ N0(mod k), which implies that the values of y used in
this plot are not strictly constant but deviate slightly from
their nominal values for small N0, which causes the deviation
from a perfect collapse for y = 0.2. Even for different values
of k, this scaling function works, as can be seen in Fig. 4,
where the scaling collapses for three cases k = 1, 2, and 4, are
shown. Surprisingly, this means that the process of choosing a
cluster proportional to its mass in conjunction with choosing
two clusters at random for k = 2 is asymptotically the same as
repeating the merging process for k = 1 twice in the sense of
the scaled mass.

FIG. 4. (Color online) Finite-size scaling collapses for different
k. In order to check the scaling collapses for different k, kN0 is fixed
at 400 and N = 4, 16, and 24, which correspond to y = 0.04, 0.64,
and 1.44. Collapse lines for y = 0.04 and y = 1.44 are shifted up and
down to make them distinguishable from each other.
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The probability p
N0
N (m) satisfies the following recursion

relation:

p
N0
N+k(m) = A

N0−N+1∑
m′=m+k

′ m′ − 1

m′ p
N0
N (m′)pm′

k+1(m), (15)

with

A = N0N (k + 1)

(N0 − N )(N + k)
, (16)

where the prime on the summation symbol indicates that
m′ must increase in steps of k. Interestingly this quadratic
recursion relation corresponds to the time-reversed process
of aggregation, i.e., fragmentation. As with the quadratic
recursion relation of mass-independent aggregation [1], the
mass distribution at N + k is given by the product of the
mass distribution at N describing the relative probabilities with
which the cluster fragments, given by pm′

k+1(m), and the total
fragmentation probability. The latter was just ∝ (m′ − 1) in
the mass-independent case [1], while now it is proportional
to m′−1

m′ . Equation (15) follows then by considering how
fragmentation leading to a cluster with mass m goes through
an intermediary with mass m′.

We also examined numerically the aggregation processes
where the clusters were chosen with probabilities proportional
to higher powers of their mass, in particular, ∝m2 and ∝m3,
i.e., the square of a cluster’s mass and the cubic of a cluster’s
mass. The asymptotic power law exponents are roughly
−5/2 and −7/2 for the m2 dependence and m3 dependence,

respectively. However, to the best of our knowledge, exact
solutions for these cases have not yet been found.

In summary, we derived the exact solutions for the
probabilities to find any configuration after a fixed number
of aggregation events in the models where a cluster picked
with probability proportional to its mass aggregates with k

other particles. More specifically, we studied three versions
of this process (particles on a ring joining with nearest
neighbors, particles on an open-ended line, and the well-
mixed case), and found exactly the same solutions using
combinatorial counting. We attribute this to the absence of
spatial correlations, although they are a priori not excluded.
Differently from the mass-independent random sequential
renormalization (RSR), which shows k-dependent exponents
in scaling laws for small masses, the cluster size distribution
follows a power law with exponent −3/2 independent of k,
which is the same with that of the sum kernel for irreversible
aggregation. Finally, the aggregation process is also related to
a time-reversed fragmentation process, the characteristics of
which are briefly discussed.

Mass-dependent RSR and the related aggregation process
was also considered in two dimensions [3], where a runaway
giant cluster exists after a few steps and takes all merging
action. The behavior is very similar to the gelation in the
aggregation process with the product kernel, but aggregation
events in two-dimensional RSR involve fluctuating numbers of
neighbors, differently from the aggregation process considered
in the present Rapid Communication.
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