47 research outputs found

    Tunable diode laser measurements of hydrothermal/volcanic CO2 and implications for the global CO2 budget

    Get PDF
    Quantifying the CO2 flux sustained by low-temperature fumarolic fields in hydrothermal/volcanic environments has remained a challenge, to date. Here, we explored the potential of a commercial infrared tunable laser unit for quantifying such fumarolic volcanic/hydrothermal CO2 fluxes. Our field tests were conducted between April 2013 and March 2014 at Nea Kameni (Santorini, Greece), Hekla and Krýsuvík (Iceland) and Vulcano (Aeolian Islands, Italy). At these sites, the tunable laser was used to measure the path-integrated CO2 mixing ratios along cross sections of the fumaroles' atmospheric plumes. By using a tomographic post-processing routine, we then obtained, for each manifestation, the contour maps of CO2 mixing ratios in the plumes and, from their integration, the CO2 fluxes. The calculated CO2 fluxes range from low (5.7 ± 0.9 t d−1; Krýsuvík) to moderate (524 ± 108 t d−1; La Fossa crater, Vulcano). Overall, we suggest that the cumulative CO2 contribution from weakly degassing volcanoes in the hydrothermal stage of activity may be significant at the global scale

    Tunable diode laser measurements of hydrothermal/volcanic CO2 and implications for the global CO2 budget

    Get PDF
    Quantifying the CO2 flux sustained by lowtemperature fumarolic fields in hydrothermal/volcanic environments has remained a challenge, to date. Here, we explored the potential of a commercial infrared tunable laser unit for quantifying such fumarolic volcanic/hydrothermal CO2 fluxes. Our field tests were conducted between April 2013 and March 2014 at Nea Kameni (Santorini, Greece), Hekla and Krýsuvík (Iceland) and Vulcano (Aeolian Islands, Italy). At these sites, the tunable laser was used to measure the path-integrated CO2 mixing ratios along cross sections of the fumaroles’ atmospheric plumes. By using a tomographic post-processing routine, we then obtained, for each manifestation, the contour maps of CO2 mixing ratios in the plumes and, from their integration, the CO2 fluxes. The calculated CO2 fluxes range from low (5.7 +/- 0.9 t d-1; Krýsuvík) to moderate (524 +/-108 t d-1; La Fossa crater, Vulcano). Overall, we suggest that the cumulative CO2 contribution from weakly degassing volcanoes in the hydrothermal stage of activity may be significant at the global scale

    Ground-Based measurements of the 2014-2015 holuhraun volcanic cloud (Iceland)

    Get PDF
    The 2014-2015 BĂĄrĂ°arbunga fissure eruption at Holuhraun in central Iceland was distinguished by the high emission of gases, in total 9.6 Mt SO2, with almost no tephra. This work collates all ground-based measurements of this extraordinary eruption cloud made under particularly challenging conditions: remote location, optically dense cloud with high SO2 column amounts, low UV intensity, frequent clouds and precipitation, an extensive and hot lava field, developing ramparts, and high-latitude winter conditions. Semi-continuous measurements of SO2 flux with three scanning DOAS instruments were augmented by car traverses along the ring-road and along the lava. The ratios of other gases/SO2 were measured by OP-FTIR, MultiGAS, and filter packs. Ratios of SO2/HCl = 30-110 and SO2/HF = 30-130 show a halogen-poor eruption cloud. Scientists on-site reported extremely minor tephra production during the eruption. OPC and filter packs showed low particle concentrations similar to non-eruption cloud conditions. Three weather radars detected a droplet-rich eruption cloud. Top of eruption cloud heights of 0.3-5.5 km agl were measured with ground-and aircraft-based visual observations, web camera and NicAIR II infrared images, triangulation of scanning DOAS instruments, and the location of SO2 peaks measured by DOAS traverses. Cloud height and emission rate measurements were critical for initializing gas dispersal simulations for hazard forecasting

    Ground-Based Measurements of the 2014–2015 Holuhraun Volcanic Cloud (Iceland)

    Get PDF
    The 2014–2015 Bárðarbunga fissure eruption at Holuhraun in central Iceland was distinguished by the high emission of gases, in total 9.6 Mt SO2, with almost no tephra. This work collates all ground-based measurements of this extraordinary eruption cloud made under particularly challenging conditions: remote location, optically dense cloud with high SO2 column amounts, low UV intensity, frequent clouds and precipitation, an extensive and hot lava field, developing ramparts, and high-latitude winter conditions. Semi-continuous measurements of SO2 flux with three scanning DOAS instruments were augmented by car traverses along the ring-road and along the lava. The ratios of other gases/SO2 were measured by OP-FTIR, MultiGAS, and filter packs. Ratios SO2/HCl = 30–110 and SO2/HF = 30–130 show a halogen-poor eruption cloud. Scientists on-site reported extremely minor tephra production during the eruption. OPC and filter packs showed low particle concentrations similar to non-eruption cloud conditions. Three weather radars detected a droplet-rich eruption cloud. Top of eruption cloud heights of 0.3–5.5 km agl were measured with ground- and aircraft-based visual observations, web camera and NicAIR II infrared images, triangulation of scanning DOAS instruments, and the location of SO2 peaks measured by DOAS traverses. Cloud height and emission rate measurements were critical for initializing gas dispersal simulations for hazard forecasting

    Guida alla redazione degli atti amministrativi

    Get PDF
    La "Guida alla redazione degli atti amministrativi" intende fornire indicazioni per la redazione degli atti per tutti i funzionari della pubblica amministrazione. Si articola in tre parti: (a) la lingua degli atti, (b) la struttura del provvedimento amministrativo, (c) il rinvio ad altri atti. Ne è autore un gruppo di linguisti e giuristi facenti capo all'ITTIG-CNR (Istituto per le Tecniche e Tecnologie dell'Informazione Giuridica) e dell'Accademia della Crusca

    La FR.E.M.S. (FRequency modulated ElectroMagnetic neural Stimulation): una nuova prospettiva terapeutica per la neuropatia diabetica dolorosa degli arti inferiori

    No full text
    The FR.E.M.S. therapy represents an useful therapeutic remedy for the symptomatic management of the diabetic patients with a painful sensitive neuropathy

    Characterization of the deep levels responsible for non-radiative recombination in InGaN/GaN light-emitting diodes

    No full text
    This paper presents an extensive investigation of the deep levels related to non-radiative recombination in InGaN/GaN light-emitting diodes (LEDs). The study is based on combined optical and deep-level transient spectroscopy measurements, carried out on LEDs with identical structure and with different values of the non-radiative recombination coefficient. Experimental data lead to the following, relevant, results: (i) LEDs with a high non-radiative recombination coefficient have a higher concentration of a trap (labeled as \u201ce2\u201d) with an activation energy of 0.7 eV, which is supposed to be located close to/within the active region; (ii) measurements carried out with varying filling pulse duration suggest that this deep level behaves as a point-defect/dislocation complex. The Arrhenius plot of this deep level is critically compared with the previous literature reports, to identify its physical origin

    • Volcanic CO2 measurements via Tunable Diode Laser Spectrometer

    No full text
    The analysis of volcanic gas datasets offer key information to build/validate geological models relevant to a variety of volcanic processes and behaviours, including eruptions. In the last decades, near-infrared room-temperature diode lasers, though in an experimental phase, are finding applications in volcanic gas studies. Here, we report on the application of the GasFinder 2.0, a commercial tunable diode infrared laser-receiver unit, operating in the 1.3-1.7 μm wavelength range, to measuring CO2 concentrations in volcanic gas emissions. At first, our field tests were conducted in three different campaigns at Campi Flegrei volcano (near Pozzuoli, Southern Italy), and, subsequently, also in other degassing systems (Nea Kameni volcano, Greece; Hekla Volcano and Krýsuvík hydrothermal area, Iceland). GasFinder repeatedly measured the path-integrated mixing ratios of CO2 along cross-sections of the atmospheric plumes of the main fumarolic fields in the investigated areas. At each site, we used an ad-hoc designed measurement geometry, using the GasFinder unit and several retro-reflector mirrors, to scan the plumes from different angles and distances. From post-processing of the data, by using a tomographic Matlab routine, we resolved, for each of the manifestations, the contour maps of CO2 mixing ratios in their atmospheric plumes. From their integration (and after multiplication by the plumes’ transport speeds), we evaluated the CO2 fluxes. The so-calculated fluxes ranged from ∼5.7 (Krýsuvík) to ∼490 (Campi Flegrei) tons/day, supporting a significant contribution of fumaroles to the global CO2 budget
    corecore