289 research outputs found
Physics-Based Swarm Intelligence for Disaster Relief Communications
This study explores how a swarm of aerial mobile vehicles can provide network
connectivity and meet the stringent requirements of public protection and
disaster relief operations. In this context, we design a physics-based
controlled mobility strategy, which we name the extended Virtual Force Protocol
(VFPe), allowing self-propelled nodes, and in particular here unmanned aerial
vehicles, to fly autonomously and cooperatively. In this way, ground devices
scattered on the operation site may establish communications through the
wireless multi-hop communication routes formed by the network of aerial nodes.
We further investigate through simulations the behavior of the VFPe protocol,
notably focusing on the way node location information is disseminated into the
network as well as on the impact of the number of exploration nodes on the
overall network performance.Comment: in International Conference on Ad Hoc Networks and Wireless, Jul
2016, Lille, Franc
Sensor networks security based on sensitive robots agents. A conceptual model
Multi-agent systems are currently applied to solve complex problems. The
security of networks is an eloquent example of a complex and difficult problem.
A new model-concept Hybrid Sensitive Robot Metaheuristic for Intrusion
Detection is introduced in the current paper. The proposed technique could be
used with machine learning based intrusion detection techniques. The new model
uses the reaction of virtual sensitive robots to different stigmergic variables
in order to keep the tracks of the intruders when securing a sensor network.Comment: 5 page
Deaf, Dumb, and Chatting Robots, Enabling Distributed Computation and Fault-Tolerance Among Stigmergic Robot
We investigate ways for the exchange of information (explicit communication)
among deaf and dumb mobile robots scattered in the plane. We introduce the use
of movement-signals (analogously to flight signals and bees waggle) as a mean
to transfer messages, enabling the use of distributed algorithms among the
robots. We propose one-to-one deterministic movement protocols that implement
explicit communication. We first present protocols for synchronous robots. We
begin with a very simple coding protocol for two robots. Based on on this
protocol, we provide one-to-one communication for any system of n \geq 2 robots
equipped with observable IDs that agree on a common direction (sense of
direction). We then propose two solutions enabling one-to-one communication
among anonymous robots. Since the robots are devoid of observable IDs, both
protocols build recognition mechanisms using the (weak) capabilities offered to
the robots. The first protocol assumes that the robots agree on a common
direction and a common handedness (chirality), while the second protocol
assumes chirality only. Next, we show how the movements of robots can provide
implicit acknowledgments in asynchronous systems. We use this result to design
asynchronous one-to-one communication with two robots only. Finally, we combine
this solution with the schemes developed in synchronous settings to fit the
general case of asynchronous one-to-one communication among any number of
robots. Our protocols enable the use of distributing algorithms based on
message exchanges among swarms of Stigmergic robots. Furthermore, they provides
robots equipped with means of communication to overcome faults of their
communication device
Ants in a Labyrinth: A Statistical Mechanics Approach to the Division of Labour
Division of labour (DoL) is a fundamental organisational principle in human
societies, within virtual and robotic swarms and at all levels of biological
organisation. DoL reaches a pinnacle in the insect societies where the most
widely used model is based on variation in response thresholds among
individuals, and the assumption that individuals and stimuli are well-mixed.
Here, we present a spatially explicit model of DoL. Our model is inspired by
Pierre de Gennes' 'Ant in a Labyrinth' which laid the foundations
of an entire new field in statistical mechanics. We demonstrate the emergence,
even in a simplified one-dimensional model, of a spatial patterning of
individuals and a right-skewed activity distribution, both of which are
characteristics of division of labour in animal societies. We then show using a
two-dimensional model that the work done by an individual within an activity
bout is a sigmoidal function of its response threshold. Furthermore, there is an
inverse relationship between the overall stimulus level and the skewness of the
activity distribution. Therefore, the difference in the amount of work done by
two individuals with different thresholds increases as the overall stimulus
level decreases. Indeed, spatial fluctuations of task stimuli are minimised at
these low stimulus levels. Hence, the more unequally labour is divided amongst
individuals, the greater the ability of the colony to maintain homeostasis.
Finally, we show that the non-random spatial distribution of individuals within
biological and social systems could be caused by indirect (stigmergic)
interactions, rather than direct agent-to-agent interactions. Our model links
the principle of DoL with principles in the statistical mechanics and provides
testable hypotheses for future experiments
Earthworms Use Odor Cues to Locate and Feed on Microorganisms in Soil
Earthworms are key components of temperate soil ecosystems but key aspects of their ecology remain unexamined. Here we elucidate the role of olfactory cues in earthworm attraction to food sources and document specific chemical cues that attract Eisenia fetida to the soil fungi Geotrichum candidum. Fungi and other microorganisms are major sources of volatile emissions in soil ecosystems as well as primary food sources for earthworms, suggesting the likelihood that earthworms might profitably use olfactory cues to guide foraging behavior. Moreover, previous studies have documented earthworm movement toward microbial food sources. But, the specific olfactory cues responsible for earthworm attraction have not previously been identified. Using olfactometer assays combined with chemical analyses (GC-MS), we documented the attraction of E. fetida individuals to filtrate derived from G. candidum colonies and to two individual compounds tested in isolation: ethyl pentanoate and ethyl hexanoate. Attraction at a distance was observed when barriers prevented the worms from reaching the target stimuli, confirming the role of volatile cues. These findings enhance our understanding of the mechanisms underlying key trophic interactions in soil ecosystems and have potential implications for the extraction and collection of earthworms in vermiculture and other applied activities
- …