218 research outputs found

    Time scales of epidemic spread and risk perception on adaptive networks

    Full text link
    Incorporating dynamic contact networks and delayed awareness into a contagion model with memory, we study the spreading patterns of infectious diseases in connected populations. It is found that the spread of an infectious disease is not only related to the past exposures of an individual to the infected but also to the time scales of risk perception reflected in the social network adaptation. The epidemic threshold pcp_{c} is found to decrease with the rise of the time scale parameter s and the memory length T, they satisfy the equation pc=1T+ωTas(1eωT2/as)p_{c} =\frac{1}{T}+ \frac{\omega T}{a^s(1-e^{-\omega T^2/a^s})}. Both the lifetime of the epidemic and the topological property of the evolved network are considered. The standard deviation σd\sigma_{d} of the degree distribution increases with the rise of the absorbing time tct_{c}, a power-law relation σd=mtcγ\sigma_{d}=mt_{c}^\gamma is found

    Modulation of pairing interaction in Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} by an O dopant: a density functional theory study

    Full text link
    Scanning tunneling spectroscopy measurements on the high temperature superconductor Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} have reported an enhanced spectral gap in the neighborhood of O dopant atoms. We calculate, within density functional theory (DFT), the change in electronic structure due to such a dopant. We then construct and discuss the validity of several tight binding (TB) fits to the DFT bands with and without an O dopant. With the doping-modulated TB parameters, we finally evaluate the spin susceptibility and pairing interaction within spin fluctuation theory. The d-wave pairing eigenvalues are enhanced above the pure system without O dopant, supporting the picture of enhanced local pairing around such a defect

    Importance of Itinerancy and Quantum Fluctuations for the Magnetism in Iron Pnictides

    Full text link
    By applying density functional theory, we find strong evidence for an itinerant nature of magnetism in two families of iron pnictides. Furthermore, by employing dynamical mean field theory with continuous time quantum Monte Carlo as an impurity solver, we observe that the antiferromagnetic metal with small magnetic moment naturally arises out of coupling between unfrustrated and frustrated bands. Our results point to a possible scenario for magnetism in iron pnictides where magnetism originates from a strong instability at the momentum vector (π\pi, π\pi, π\pi) while it is reduced by quantum fluctuations due to the coupling between weakly and strongly frustrated bands.Comment: 4 pages, 4 figure

    What limits supercurrents in high temperature superconductors? A microscopic model of cuprate grain boundaries

    Full text link
    The interface properties of high-temperature cuprate superconductors have been of interest for many years, and play an essential role in Josephson junctions, superconducting cables, and microwave electronics. In particular, the maximum critical current achievable in high-Tc wires and tapes is well known to be limited by the presence of grain boundaries, regions of mismatch between crystallites with misoriented crystalline axes. In studies of single, artificially fabricated grain boundaries the striking observation has been made that the critical current Jc of a grain boundary junction depends exponentially on the misorientation angle. Until now microscopic understanding of this apparently universal behavior has been lacking. We present here the results of a microscopic evaluation based on a construction of fully 3D YBCO grain boundaries by molecular dynamics. With these structures, we calculate an effective tight-binding Hamiltonian for the d-wave superconductor with a grain boundary. The critical current is then shown to follow an exponential suppression with grain boundary angle. We identify the buildup of charge inhomogeneities as the dominant mechanism for the suppression of the supercurrent.Comment: 28 pages, 12 figure

    Pairing in the iron arsenides: a functional RG treatment

    Full text link
    We study the phase diagram of a microscopic model for the superconducting iron arsenides by means of a functional renormalization group. Our treatment establishes a connection between a strongly simplified two-patch model by Chubukov et al. and a five-band- analysis by Wang et al.. For a wide parameter range, the dominant pairing instability occurs in the extended s-wave channel. The results clearly show the relevance of pair scattering between electron and hole pockets. We also give arguments that the phase transition between the antiferromagnetic phase for the undoped system and the superconducting phase may be first order

    Gap structure in the electron-doped Iron-Arsenide Superconductor Ba(Fe0.92Co0.08)2As2: low-temperature specific heat study

    Full text link
    We report the field and temperature dependence of the low-temperature specific heat down to 400 mK and in magnetic fields up to 9 T of the electron-doped Ba(Fe0.92Co0.08)2As2 superconductor. Using the phonon specific heat obtained from pure BaFe2As2 we find the normal state Sommerfeld coefficient to be 18 mJ/mol.K^2 and a condensation energy of 1.27 J/mol. The temperature dependence of the electronic specific heat clearly indicate the presence of the low-energy excitations in the system. The magnetic field variation of field-induced specific heat cannot be described by single clean s- or d-wave models. Rather, the data require an anisotropic gap scenario which may or may not have nodes. We discuss the implications of these results.Comment: New Journal of Physics in press, 10 pages, 5 figure

    Gap symmetry and structure of Fe-based superconductors

    Full text link
    The recently discovered Fe-pnictide and chalcogenide superconductors display low-temperature properties suggesting superconducting gap structures which appear to vary substantially from family to family, and even within families as a function of doping or pressure. We propose that this apparent nonuniversality can actually be understood by considering the predictions of spin fluctuation theory and accounting for the peculiar electronic structure of these systems, coupled with the likely 'sign-changing s-wave' (s\pm) symmetry. We review theoretical aspects, materials properties and experimental evidence relevant to this suggestion, and discuss which further measurements would be useful to settle these issues.Comment: 86 pages, revie

    Simultaneous Detection of Circulating Autoreactive CD8+ T-Cells Specific for Different Islet Cell–Associated Epitopes Using Combinatorial MHC Multimers

    Get PDF
    textabstractOBJECTIVE - Type 1 diabetes results from selective T-cell-mediated destruction of the insulin-producing β-cells in the pancreas. In this process, islet epitope-specific CD8+T-cells play a pivotal role. Thus, monitoring of multiple islet-specific CD8+T-cells may prove to be valuable for measuring disease activity, progression, and intervention. Yet, conventional detection techniques (ELISPOT and HLA tetramers) require many cells and are relatively insensitive. RESEARCH DESIGN AND METHODS - Here, we used a combinatorial quantum dot major histocompatibility complex multimer technique to simultaneously monitor the presence of HLA-A2 restricted insulin B10-18, prepro-insulin (PPI)15-24, islet antigen (IA)-2797-805, GAD65114-123, islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP)265-273, and pre-pro islet amyloid polypeptide (ppIAPP)5-13-specific CD8+T-cells in recent-onset diabetic patients, their siblings, healthy control subjects, and islet cell transplantation recipients. RESULTS - Using this kit, islet autoreactive CD8+T-cells recognizing insulin B10-18, IA-2797-805, and IGRP265-273were shown to be frequently detectable in recent-onset diabetic patients but rarely in healthy control subjects; PPI15-24proved to be the most sensitive epitope. Applying the "Diab-Q-kit" to samples of islet cell transplantation recipients allowed detection of changes of autoreactive T-cell frequencies against multiple islet cell-derived epitopes that were associated with disease activity and correlated with clinical outcome. CONCLUSIONS - A kit was developed that allows simultaneous detection of CD8+T-cells reactive to multiple HLA-A2-restricted β-cell epitopes requiring limited amounts of blood, without a need for in vitro culture, that is applicable on stored blood samples

    Mid-infrared sizes of circumstellar disks around Herbig Ae/Be stars measured with MIDI on the VLTI

    Get PDF
    We present the first long baseline mid-infrared interferometric observations of the circumstellar disks surrounding Herbig Ae/Be stars. The observations were obtained using the mid-infrared interferometric instrument MIDI at the European Southern Observatory (ESO) Very Large Telescope Interferometer VLTI on Cerro Paranal. The 102 m baseline given by the telescopes UT1 and UT3 was employed, which provides a maximum full spatial resolution of 20 milli-arcsec (mas) at a wavelength of 10 μm. The interferometric signal was spectrally dispersed at a resolution of 30, giving spectrally resolved visibility information from 8 μm to 13.5 μm. We observed seven nearby Herbig Ae/Be stars and resolved all objects. The warm dust disk of HD 100546 could even be resolved in single-telescope imaging. Characteristic dimensions of the emitting regions at 10 μm are found to be from 1 AU to 10 AU. The 10 μm sizes of our sample stars correlate with the slope of the 10–25 μm infrared spectrum in the sense that the reddest objects are the largest ones. Such a correlation would be consistent with a different geometry in terms of flaring or flat (self-shadowed) disks for sources with strong or moderate mid-infrared excess, respectively. We compare the observed spectrally resolved visibilities with predictions based on existing models of passive centrally irradiated hydrostatic disks made to fit the SEDs of the observed stars. We find broad qualitative agreement of the spectral shape of visibilities corresponding to these models with our observations. Quantitatively, there are discrepancies that show the need for a next step in modelling of circumstellar disks, satisfying both the spatial constraints such as are now available from the MIDI observations and the flux constraints from the SEDs in a consistent way

    Spin-Density-Wave Gap with Dirac Nodes and Two-Magnon Raman Scattering in BaFe2As2

    Full text link
    Raman selection rules for electronic and magnetic excitations in BaFe2As2 were theoretically investigated and applied them to the separate detection of the nodal and anti-nodal gap excitations at the spin density wave (SDW) transition and the separate detection of the nearest and the next nearest neighbor exchange interaction energies. The SDW gap has Dirac nodes, because many orbitals participate in the electronic states near the Fermi energy. Using a two-orbital band model the electronic excitations near the Dirac node and the anti-node are found to have different symmetries. Applying the symmetry difference to Raman scattering the nodal and anti-nodal electronic excitations are separately obtained. The low-energy spectra from the anti-nodal region have critical fluctuation just above TSDW and change into the gap structure by the first order transition at TSDW, while those from the nodal region gradually change into the SDW state. The selection rule for two-magnon scattering from the stripe spin structure was obtained. Applying it to the two-magnon Raman spectra it is found that the magnetic exchange interaction energies are not presented by the short-range superexchange model, but the second derivative of the total energy of the stripe spin structure with respect to the moment directions. The selection rule and the peak energy are expressed by the two-magnon scattering process in an insulator, but the large spectral weight above twice the maximum spin wave energy is difficult to explain by the decayed spin wave. It may be explained by the electronic scattering of itinerant carriers with the magnetic self-energy in the localized spin picture or the particle-hole excitation model in the itinerant spin picture. The magnetic scattering spectra are compared to the insulating and metallic cuprate superconductors whose spins are believed to be localized.Comment: 38 pages, 11 figure
    corecore