75 research outputs found
Partial least square regression applied to the QTLMAS 2010 dataset
Detection of genomic regions affecting traits is a goal in many genetic studies. Studies applying distinct methods for detection of these regions, called quantitative trait loci (QTL), have been described, ranging from single marker regression [1] to methods that enable to fit several markers simultaneously [2,3]. Simultaneously fitting all markers leads to more accurate detection of QTL compared to independent fitting of single markers in a regression model when there is linkage disequilibrium (LD) between the genomic regions that affect the trait but comes at the cost of increased computational requirements [2]. Partial least square regression (PLSR) is one method for simultaneously fitting multiple markers and was applied by Bjornstad et al. for detection of QTL [3]. An interesting characteristic of PLSR its straightforward application of to simultaneous analysis of data of multiple traits [3]. The objectives of this study were to use PLSR to search for QTL and to estimate breeding values in the dataset of the QTLMAS 2010 worksho
Case management and Think First completion
“The final, definitive version of this article has been published in the Journal, Probation Journal, Vol 53 Issue 3, 2006, Copyright The Trade Union and Professional Association for Family Court and Probation Staff, by SAGE Publications Ltd at: http://prb.sagepub.com/ " DOI: 10.1177/0264550506066771This article considers the findings of a small-scale study of the practice of case managers supervising offenders required to attend the Think First Group. It explores the interface between one-to-one and group-based work within multi-modal programmes of supervision and seeks to identify those practices that support individuals in completing a group.Peer reviewe
A gene frequency model for QTL mapping using Bayesian inference
<p>Abstract</p> <p>Background</p> <p>Information for mapping of quantitative trait loci (QTL) comes from two sources: linkage disequilibrium (non-random association of allele states) and cosegregation (non-random association of allele origin). Information from LD can be captured by modeling conditional means and variances at the QTL given marker information. Similarly, information from cosegregation can be captured by modeling conditional covariances. Here, we consider a Bayesian model based on gene frequency (BGF) where both conditional means and variances are modeled as a function of the conditional gene frequencies at the QTL. The parameters in this model include these gene frequencies, additive effect of the QTL, its location, and the residual variance. Bayesian methodology was used to estimate these parameters. The priors used were: logit-normal for gene frequencies, normal for the additive effect, uniform for location, and inverse chi-square for the residual variance. Computer simulation was used to compare the power to detect and accuracy to map QTL by this method with those from least squares analysis using a regression model (LSR).</p> <p>Results</p> <p>To simplify the analysis, data from unrelated individuals in a purebred population were simulated, where only LD information contributes to map the QTL. LD was simulated in a chromosomal segment of 1 cM with one QTL by random mating in a population of size 500 for 1000 generations and in a population of size 100 for 50 generations. The comparison was studied under a range of conditions, which included SNP density of 0.1, 0.05 or 0.02 cM, sample size of 500 or 1000, and phenotypic variance explained by QTL of 2 or 5%. Both 1 and 2-SNP models were considered. Power to detect the QTL for the BGF, ranged from 0.4 to 0.99, and close or equal to the power of the regression using least squares (LSR). Precision to map QTL position of BGF, quantified by the mean absolute error, ranged from 0.11 to 0.21 cM for BGF, and was better than the precision of LSR, which ranged from 0.12 to 0.25 cM.</p> <p>Conclusions</p> <p>In conclusion given a high SNP density, the gene frequency model can be used to map QTL with considerable accuracy even within a 1 cM region.</p
Sensitivity of methods for estimating breeding values using genetic markers to the number of QTL and distribution of QTL variance
The objective of this simulation study was to compare the effect of the number of QTL and distribution of QTL variance on the accuracy of breeding values estimated with genomewide markers (MEBV). Three distinct methods were used to calculate MEBV: a Bayesian Method (BM), Least Angle Regression (LARS) and Partial Least Square Regression (PLSR). The accuracy of MEBV calculated with BM and LARS decreased when the number of simulated QTL increased. The accuracy decreased more when QTL had different variance values than when all QTL had an equal variance. The accuracy of MEBV calculated with PLSR was affected neither by the number of QTL nor by the distribution of QTL variance. Additional simulations and analyses showed that these conclusions were not affected by the number of individuals in the training population, by the number of markers and by the heritability of the trait. Results of this study show that the effect of the number of QTL and distribution of QTL variance on the accuracy of MEBV depends on the method that is used to calculate MEBV
Average composition of manganese nodules from various size classes from Station U205 in the Tasman Sea
Four hundred and twenty kilograms of manganese nodules were recovered at Station U205 in the Tasman Sea. They were sorted by size class. Representative subsets for each size class were chemically analysed and their avearge composition is presented in the published table. Samples were alaysed by X-ray fluorescence spectrometry. For this purpose, samples were ground to 80 mesh, dried at 105°C for at least 24 hours and fused with "Spectromelt A 12" (Merck 11802, containing 66% lithium tetraborate and 34% lithium metaborate). To prepare glass beads, 1 g of Mn nodule materail was mixed with 1 g of flux and heated in a RF-furnace for about 5 minutes
- …