118 research outputs found

    Magnetic field dependence of the martensitic transition and magnetocaloric effects in Ni49BiMn35In15

    Get PDF
    The structural, magnetic, and magnetocaloric properties of the Bi-doped Heusler alloy Ni49BiMn35In15 have been investigated using room temperature X-ray diffraction (XRD) and magnetization measurements in a temperature interval of 5-400 K. The alloy at room temperature was found to be in a mixture of a high temperature austenite phase (AP) and a low temperature martensite phase (MP). A drastic shift in the martensitic transition temperature at the rate of 16 K/T from 197 K to lower temperatures was observed. A kinetic arrest phenomenon of the AP was observed in the magnetization and electrical resistivity measurements during field-cooled (FC) measurements at 5T. A metamagnetic behavior characterized by a jump in magnetization in the isothermal M(H) curves near TM was observed. The maximum value of the magnetic entropy change and refrigerant capacity at Curie temperature were found to be 5.5 Jkg-1K-1 and 312 Jkg-1 for μoΔH = 5T, respectively. A large magnetoresistance value of -56% was found near the martensitic transition

    Dynamic Electron Correlation Effects On The Ground State Potential Energy Surface Of A Retinal Chromophore Model

    Get PDF
    The ground state potential energy surface of the retinal chromophore of visual pigments (e.g., bovine rhodopsin) features a low-lying conical intersection surrounded by regions with variable charge transfer and diradical electronic structures. This implies that dynamic electron correlation may have a large effect on the shape of the force fields driving its reactivity. To investigate this effect, we focus on mapping the potential energy for three paths located along the ground state CASSCF potential energy surface of the penta-2,4-dieniminium cation taken as a minimal model of the retinal chromophore. The first path spans the bond length alternation coordinate and intercepts a conical intersection point. The other two are minimum energy paths along two distinct but kinetically competitive thermal isomerization coordinates. We show that the effect of introducing the missing dynamic electron correlation variationally (with MRCISD) and perturbatively (with the CASPT2, NEVPT2, and XMCQDPT2 methods) leads, invariably, to a stabilization of the regions with charge transfer character and to a significant reshaping of the reference CASSCF potential energy surface and suggesting a change in the dominating isomerization mechanism. The possible impact of such a correction on the photoisomerization of the retinal chromophore is discussed

    Mapping The Excited State Potential Energy Surface Of A Retinal Chromophore Model With Multireference And Equation-of-motion Coupled-cluster Methods

    Get PDF
    The photoisomerization of the retinal chromophore of visual pigments proceeds along a complex reaction coordinate on a multidimensional surface that comprises a hydrogen-out-of-plane (HOOP) coordinate, a bond length alternation (BLA) coordinate, a single bond torsion and, finally, the reactive double bond torsion. These degrees of freedom are coupled with changes in the electronic structure of the chromophore and, therefore, the computational investigation of the photochemistry of such systems requires the use of a methodology capable of describing electronic structure changes along all those coordinates. Here, we employ the penta-2,4-dieniminium (PSB3) cation as a minimal model of the retinal chromophore of visual pigments and compare its excited state isomerization paths at the CASSCF and CASPT2 levels of theory. These paths connect the cis isomer and the trans isomer of PSB3 with two structurally and energetically distinct conical intersections (CIs) that belong to the same intersection space. MRCISD+Q energy profiles along these paths provide benchmark values against which other ab initio methods are validated. Accordingly, we compare the energy profiles of MRPT2 methods (CASPT2, QD-NEVPT2, and XMCQDPT2) and EOM-SF-CC methods (EOM-SF-CCSD and EOM-SF-CCSD(dT)) to the MRCISD+Q reference profiles. We find that the paths produced with CASSCF and CASPT2 are topologically and energetically different, partially due to the existence of a locally excited region on the CASPT2 excited state near the Franck-Condon point that is absent in CASSCF and that involves a single bond, rather than double bond, torsion. We also find that MRPT2 methods as well as EOM-SF-CCSD(dT) are capable of quantitatively describing the processes involved in the photoisomerization of systems like PSB3

    Demonstration of a robust magnonic spin wave interferometer

    Get PDF
    Magnonics is an emerging field dealing with ultralow power consumption logic circuits, in which the flow of spin waves, rather than electric charges, transmits and processes information. Waves, including spin waves, excel at encoding information via their phase using interference. This enables a number of inputs to be processed in one device, which offers the promise of multi-input multi-output logic gates. To realize such an integrated device, it is essential to demonstrate spin wave interferometers using spatially isotropic spin waves with high operational stability. However, spin wave reflection at the waveguide edge has previously limited the stability of interfering waves, precluding the use of isotropic spin waves, i.e., forward volume waves. Here, a spin wave absorber is demonstrated comprising a yttrium iron garnet waveguide partially covered by gold. This device is shown experimentally to be a robust spin wave interferometer using the forward volume mode, with a large ON/OFF isolation value of 13.7 dB even in magnetic fields over 30 Oe

    Adiabatic Temperature Changes at Structural and Magnetic Phase Transitions in Ni45Mn43CoSn11 at High Magnetic Fields

    Get PDF
    The adiabatic temperature change (Δ Tad) in Ni45Mn43CoSn11 has been measured by a direct method in magnetic field changes up to 14 T. Large reversible magnetocaloric effects resulting in Δ Tad of about =-11 and 5 K have been observed for magnetic field changes of 14 T at the magnetostructural (TA ∼ 260 K) and magnetic transitions (TC ∼ 320 K), respectively. The impact of the thermomagnetic history on Δ Tad at high magnetic fields has been reported. The significant observed changes in the relaxation time of Δ Tad, depending on the type of the phase transitions, magnetization, and demagnetization cycle are discussed

    The Comparison of Direct and Indirect Methods for Determining the Magnetocaloric Parameters in the Heusler Alloy Ni50Mn34.8In14.2B

    Get PDF
    The magnetocaloric properties of the Ni50Mn34.8In14.2B Heusler alloy have been studied by direct measurements of the adiabatic temperature change (ΔTAD(T,H)) and indirectly by magnetization (M(T,H)), differential scanning calorimetry, and specific heat (C(T,H)) measurements. The presence of a first-order ferromagnetic-paramagnetic transition has been detected for Ni50Mn34.8In14.2B at 320 K. The magnetocaloric parameters, i.e., the magnetic entropy change (ΔSM = (2.9-3.2) J/kgK) and the adiabatic temperature change (ΔTAD = (1.3-1.52) K), have been evaluated for ΔH = 1.8 T from CP(T,H) and M(T,H) data and from direct ΔTAD(T,H) measurements. The extracted magnetocaloric parameters are comparable to those of Gd

    Relaxation phenomena in adiabatic temperature changes near magnetostructural transitions in Heusler alloys

    Get PDF
    The relaxation processes of the adiabatic temperature changes (ΔTad) at the phase transitions in Ni45Mn43CoSn11, Ni50Mn36.5In13.5, and Ni50Mn35In14.25B0.75 Heusler alloys with different magnetic structures have been studied using a direct extraction method in magnetic fields up to 14 T. It has been found that ΔTad exhibits short relaxation times (less than 10−1 (s)) in the vicinity of the second order phase transitions at the Curie temperatures. The relaxation times of the first order martensitic transitions strongly depend on the latent heat of the transition and can be characterized by a logarithmic law

    Giant field-induced adiabatic temperature changes in In-based off-stoichiometric Heusler alloys

    Get PDF
    Direct measurements of the adiabatic temperature change (ΔTAD) of Ni50Mn35In14.5B0.5 have been done using an adiabatic magnetocalorimeter in a temperature range of 250-350 K, and with magnetic field changes up to ΔH = 1.8 T. The initial susceptibility in the low magnetic field region drastically increases with temperature starting at about 300 K. Magnetocaloric effects parameters, adiabatic temperature changes, and magnetic entropy changes were found to be a linear function of H2/3 in the vicinity of the second order transitions (SOT), whereas the first order transitions do not obey the H2/3 law due to the discontinuity of the transition. The relative cooling power based on the adiabatic temperature change for a magnetic field change of 1.8 T has been estimated. Maximum values of ΔTAD = −2.6 K and 1.7 K were observed at the magnetostructural transition (MST) and SOT for ΔH = 1.8 T, respectively. The observed ΔTAD at the MST exceeds the ΔTAD for Ni50Mn35In14X with X = In, Al, and Ge by more than 20% and is larger than the Gd based Heusler alloys
    • …
    corecore