13 research outputs found

    Community infrastructure and repository for marine magnetic identifications

    Get PDF
    Magnetic anomaly identifications underpin plate tectonic reconstructions and form the primary data set from which the age of the oceanic lithosphere and seafloor spreading regimes in the ocean basins can be determined. Although these identifications are an invaluable resource, their usefulness to the wider scientific community has been limited due to the lack of a central community infrastructure to organize, host, and update these interpretations. We have developed an open-source, community-driven online infrastructure as a repository for quality-checked magnetic anomaly identifications from all ocean basins. We provide a global sample data set that comprises 96,733 individually picked magnetic anomaly identifications organized by ocean basin and publication reference, and provide accompanying Hellingerformat files, where available. Our infrastructure is designed to facilitate research in plate tectonic reconstructions or research that relies on an assessment of plate reconstructions, for both experts and nonexperts alike. To further enhance the existing repository and strengthen its value, we encourage others in the community to contribute to this effort

    Some aspects of the structure and magnetization of the oceanic crust

    No full text
    The structure and magnetization of the oceanic crust reflect its tectonic and magmatic evolution since its initial formation. The magnetization of the crust also provides a record of the polarity reversals and strength of the Earth's geomagnetic field. In this dissertation I first describe absolute paleointensity measurements made on gabbroic rocks collected from the lower oceanic crust of the Troodos ophiolite, Cyprus. The resultant data-set provides a view into the geomagnetic field during the end of the Cretaceous normal polarity superchron (CNS, 120.6 to 83 million years ago). This data-set is then compared to the locally and globally existing data and predictions made by geodynamo numerical simulations. The results hint that the geomagnetic field had similar properties during times of frequent reversals and times of stable polarity. The second chapter of this dissertation is focused on the marine magnetic anomalies observed across the North Pacific fracture zones. Here I analyze archival and newly collected magnetic anomaly and bathymetric profiles measured across three fracture zones in the Cretaceous Quiet Zone (CNS in age). Forward and inverse modeling indicate that these anomalies arise from remanent magnetization, with enhanced remanence located on one side of each fracture zone. These long-duration enhanced zones require some long-lived asymmetry in crustal construction processes near ridge-transform intersections. The calculated magnetization contrasts provide long-term constraints on the properties of the geomagnetic field during the Cretaceous superchron. Finally, using seismic reflection and magnetic anomaly grids collected in the Adare Basin, Antarctica, I explore the kinematic evolution of the West Antarctic rift system during the Neogene. Correlation of the Adare seismic sequence to the closest drillholes and the Ross Sea seismic stratigraphy establishes the temporal framework of three regional tectonic events. Overall, minimal but significant extensional activity took place in the Adare Basin after seafloor spreading stopped. Comparison of the results with observations from the central and southern parts of the rift system suggests that a major change in plate motion took place in the middle miocen

    Late Cenozoic unification of East and West Antarctica

    No full text
    The kinematic evolution of the West Antarctic rift system has important consequences for regional and global geodynamics. However, due to the lack of Neogene seafloor spreading at the plate boundary and despite being poorly resolved, East-West Antarctic motion was assumed to have ended abruptly at 26 million years ago. Here we present marine magnetic data collected near the northern edge of the rift system showing that motion between East and West Antarctica lasted until the middle Neogene (similar to 11 million years ago), long after the cessation of the known mid-Cenozoic pulse of motion. We calculate new rotation parameters for the early Neogene that provide the kinematic framework to understand the varied lithospheric settings of the Transantarctic Mountains and the tectono-volcanic activity within the rift. Incorporation of the Antarctic plate motion into the global plate circuit has major implications for the predicted Neogene motion of the Pacific Plate relative to the rest of the plates

    The Cretaceous opening of the South Atlantic Ocean

    No full text
    International audienceThe separation of South America from Africa during the Cretaceous is poorly understood due to the long period of stable polarity of the geomagnetic field, the Cretaceous Normal Superchron (CNS, lasted between ∼121 and 83.6 Myr ago). We present a new identification of magnetic anomalies located within the southern South Atlantic magnetic quiet zones that have arisen due to past variations in the strength of the dipolar geomagnetic field. Using these anomalies, together with fracture zone locations, we calculate the first set of magnetic anomalies-based finite rotation parameters for South America and Africa during that period. The kinematic solutions are generally consistent with fracture zone traces and magnetic anomalies outside the area used to construct them. The rotations indicate that seafloor spreading rates increased steadily throughout most of the Cretaceous and decreased sharply at around 80 Myr ago. A change in plate motion took place in the middle of the superchron, roughly 100 Myr ago, around the time of the final breakup (i.e., separation of continental-oceanic boundary in the Equatorial Atlantic). Prominent misfit between the calculated synthetic flowlines (older than Anomaly Q1) and the fracture zones straddling the African Plate in the central South Atlantic could only be explained by a combination of seafloor asymmetry and internal dextral motion (<100 km) within South America, west of the Rio Grande fracture zone. This process has lasted until ∼92 Myr ago after which both Africa and South America (south of the equator) behaved rigidly. The clearing of the continental-oceanic boundaries within the Equatorial Atlantic Gateway was probably completed by ∼95 Myr ago. The clearing was followed by a progressive widening and deepening of the passageway, leading to the emergence of north-south flow of intermediate and deep-water which might have triggered the global cooling of bottom water and the end for the Cretaceous greenhouse period

    Geomagnetic field variability during the Cretaceous Normal Superchron

    No full text
    International audienceProlonged periods of stable polarity in the Earth's magnetic field are termed superchrons. The most recent of these intervals, the Cretaceous Normal Superchron, lasted from approximately 121 to 83 million years ago and is most commonly observed in the lack of a prominent stripe pattern in the sea-surface magnetic anomaly above the oceanic crust formed during this period. The exact behaviour of the geomagnetic field during this interval, however, remains unclear, as palaeomagnetic data from igneous and sedimentary sections yield conflicting results. Here we report a deep-tow magnetic profile from the Central Atlantic Ocean, African flank, spanning the entire Cretaceous Normal Superchron. We suggest that this profile, along with widely distributed sea-surface magnetic anomaly data, records the rising variability of the dipolar geomagnetic field at the beginning of the interval, which culminates in a highly fluctuating field between 110 and 100 million years ago. We interpret the subdued magnetic signal in the last 9 million years of the superchron as the return to a more stable geomagnetic field. This variability allows us to define two internal time markers valuable for plate reconstructions. Based on the degree of variability observed, we conclude that geodynamo models that call for low field variability may provide an oversimplified view of superchrons

    Noise in the Cretaceous Quiet Zone uncovers plate tectonic chain reaction

    No full text
    Global plate reorganizations, intriguing but loosely defined periods of profoundly changing plate motions, may be caused by a single trigger such as a continental collision or a rising mantle plume. But whether and how such triggers propagate throughout a plate circuit remains unknown. Here, we show how a rising mantle plume set off a ‘plate tectonic chain reaction’. Plume rise has been shown to trigger formation of a subduction zone within the Neotethys Ocean between Africa and Eurasia at ~105 Ma. We provide new constraints on Africa-Eurasia convergence rates using variations in geomagnetic ‘noise’ within the Cretaceous Normal Superchron (the 126-83 Ma period without magnetic reversals) recorded in the Atlantic Quiet Zones crust. These new constraints are consistent with the timing of numerically predicted African Plate acceleration and deceleration associated with onset and arrest of the intra-Neotethyan subduction zone. The acceleration was associated with a change in Africa-Eurasia convergence direction, which in turn was accommodated by a next subduction initiation at ~85 Ma in the Alpine region that cascaded into regional tectonic events. Our concept of plate tectonic chain reactions shows how changes in plate motion, underpinned by mantle dynamics, may self-perpetuate through a plate circuit, making global plate reorganizations a key to unlock the driving mechanisms behind plate tectonics

    Plate tectonic chain reaction revealed by noise in the Cretaceous quiet zone

    No full text
    Global reorganizations of tectonic plates may be caused by a trigger such as a continental collision or a rising mantle plume. However, whether and how such a trigger propagates through a plate circuit remains unclear. Here we use a plate kinematic model to quantify relative motions between the African and Eurasian plates following a plume-induced plate motion change that triggered formation of a new subduction zone within the Neotethys Ocean at 105 Ma. We constrain the plate kinematic model by geomagnetic intensity variations recorded in Atlantic quiet zone crust that formed during the Cretaceous Normal Superchron (126–83 Ma), during which magnetic reversals were absent. We find that convergence rate changes between Africa and Eurasia are well explained by the initiation and arrest of the plume-induced subduction zone. Our plate kinematic model also reveals that the plate acceleration that followed upon subduction initiation changed the Africa–Eurasia convergence direction, which in turn was accommodated by subsequent subduction initiation about 85 Ma in the Alpine region that then triggered a cascade of regional tectonic events. This plate tectonic chain reaction illustrates how changes in plate motion, underpinned by mantle dynamics, may self-perpetuate through a plate circuit

    Direct evidence for dynamic magma supply fossilized in the lower oceanic crust of the Troodos ophiolite

    No full text
    International audienceTemporal and spatial variabilities of mantle upwelling and melt supply in mid-ocean ridges (MORs) have long been documented. Such variabilities span a range of scales and have a profound effect on the structure as well as the composition of the oceanic crust. Previous seismic and gravity studies have suggested that the lower oceanic crust plays a major role in accommodating these changes in melt supply. Here we report the first direct evidence for a sharp transition from coherent sub-horizontal to near vertical magma flows frozen in the lower oceanic crust of the Troodos ophiolite at the segment edge near a fossil ridge-transform intersection. We constrain the preferred petrofabric lineation directions at 13 gabbroic sites using anisotropy of magnetic susceptibility (AMS) verified by electron backscatter diffraction. Pre-emplacement accretion-related rotations were corrected using magnetic remanence directions. We identify two provinces of nearly uniform susceptibility directions (principal axes) and attribute them to two magmatic episodes. A more focused mantle upwelling and melting episode near the segment midpoint may have resulted in lower crustal lateral magma flows along the fossil segment-edge, whereas uniform mantle upwelling and melt supply along the entire axis may have resulted in vertical magma flows at the segment-edge. Overall, our data verify the vital role of the lower oceanic crust in accommodating changes in mantle upwelling and melt supply beneath MORs

    The kinematic evolution of the Macquarie Plate: A case study for the fragmentation of oceanic lithosphere

    No full text
    International audienceThe tectonic evolution of the Southeast Indian Ridge (SEIR), and in particular of its easternmost edge, has not been constrained by high-resolution shipboard data and therefore the kinematic details of its behavior are uncertain. Using new shipboard magnetic data obtained by R/VIB Araon and M/V L'Astrolabe along the easternmost SEIR and available archived magnetic data, we estimated the finite rotation parameters of the Macquarie-Antarctic and Australian-Antarctic motions for eight anomalies (1o, 2, 2Ay, 2Ao, 3y, 3o, 3Ay, and 3Ao). These new finite rotations indicate that the Macquarie Plate since its creation ∼6.24 million years ago behaved as an independent and rigid plate, confirming previous estimates. The change in the Australian-Antarctic spreading direction from N-S to NW-SE appears to coincide with the formation of the Macquarie Plate at ∼6.24 Ma. Analysis of the estimated plate motions indicates that the initiation and growth stages of the Macquarie Plate resemble the kinematic evolution of other microplates and continental breakup, whereby a rapid acceleration in angular velocity took place after its initial formation, followed by a slow decay, suggesting that a decrease in the resistive strength force might have played a significant role in the kinematic evolution of the microplate. The motions of the Macquarie Plate during its growth stages may have been further enhanced by the increased subducting rates along the Hjort Trench, while the Macquarie Plate has exhibited constant growth by seafloor spreading

    Plate tectonic chain reaction revealed by noise in the Cretaceous quiet zone

    No full text
    Global reorganizations of tectonic plates may be caused by a trigger such as a continental collision or a rising mantle plume. However, whether and how such a trigger propagates through a plate circuit remains unclear. Here we use a plate kinematic model to quantify relative motions between the African and Eurasian plates following a plume-induced plate motion change that triggered formation of a new subduction zone within the Neotethys Ocean at 105 Ma. We constrain the plate kinematic model by geomagnetic intensity variations recorded in Atlantic quiet zone crust that formed during the Cretaceous Normal Superchron (126–83 Ma), during which magnetic reversals were absent. We find that convergence rate changes between Africa and Eurasia are well explained by the initiation and arrest of the plume-induced subduction zone. Our plate kinematic model also reveals that the plate acceleration that followed upon subduction initiation changed the Africa–Eurasia convergence direction, which in turn was accommodated by subsequent subduction initiation about 85 Ma in the Alpine region that then triggered a cascade of regional tectonic events. This plate tectonic chain reaction illustrates how changes in plate motion, underpinned by mantle dynamics, may self-perpetuate through a plate circuit
    corecore