25 research outputs found

    Spacecraft Geometry Effects on Kinetic Impactor Missions

    Get PDF
    The DART (Double Asteroid Redirection Test) mission will impact a spacecraft on the secondary (Dimorphos) of the binary asteroid system Didymos in 2022 September, with the goal of altering the orbital period of Dimorphos about Didymos sufficiently to be observed from ground-based observations. Numerical impact modeling is a crucial component in understanding the outcome of the DART experiment, and while many have investigated the effects of target properties, such as material strength and porosity (which remain unknown), an often overlooked factor is the importance of accurately representing the spacecraft itself in such models. Most impact modeling to date has considered simple impactor geometries such as a solid uniform sphere, but in reality the spacecraft is a complex shape full of different components, open spaces, and thin walled structures. At a minimum, a simple solid representation underestimates the surface area of the impact: for a small body such as Dimorphos (approximately 160 m in diameter), the difference between a spacecraft spanning 20 m (including solar arrays) impacting and a sub-1 m idealized shape may be important. In this paper, we compare models impacting high-fidelity models of the spacecraft based on the CAD geometry with various simplified impactors, in order to assess the potential importance of this effect. We find that the difference between the simplest impactor geometries (such as a uniform sphere) and the real spacecraft is measurable, and has an interesting dependence on the material properties of the asteroid itself

    Exploring the Origins of Deuterium Enrichments in Solar Nebular Organics

    Get PDF
    Deuterium-to-hydrogen (D/H) enrichments in molecular species provide clues about their original formation environment. The organic materials in primitive solar system bodies have generally higher D/H ratios and show greater D/H variation when compared to D/H in solar system water. We propose this difference arises at least in part due to 1) the availability of additional chemical fractionation pathways for organics beyond that for water, and 2) the higher volatility of key carbon reservoirs compared to oxygen. We test this hypothesis using detailed disk models, including a sophisticated, new disk ionization treatment with a low cosmic ray ionization rate, and find that disk chemistry leads to higher deuterium enrichment in organics compared to water, helped especially by fractionation via the precursors CH2_2D+^+/CH3+_3^+. We also find that the D/H ratio in individual species varies significantly depending on their particular formation pathways. For example, from ∼20−40\sim20-40 AU, CH4_4 can reach D/H∼2×10−3\rm{D/H\sim2\times10^{-3}}, while D/H in CH3_3OH remains locally unaltered. Finally, while the global organic D/H in our models can reproduce intermediately elevated D/H in the bulk hydrocarbon reservoir, our models are unable to reproduce the most deuterium-enriched organic materials in the solar system, and thus our model requires some inheritance from the cold interstellar medium from which the Sun formed.Comment: 11 pages, 7 figures, accepted for publication in Ap

    The ancient heritage of water ice in the solar system

    Get PDF
    Identifying the source of Earth's water is central to understanding the origins of life-fostering environments and to assessing the prevalence of such environments in space. Water throughout the solar system exhibits deuterium-to-hydrogen enrichments, a fossil relic of low-temperature, ion-derived chemistry within either (i) the parent molecular cloud or (ii) the solar nebula protoplanetary disk. Utilizing a comprehensive treatment of disk ionization, we find that ion-driven deuterium pathways are inefficient, curtailing the disk's deuterated water formation and its viability as the sole source for the solar system's water. This finding implies that if the solar system's formation was typical, abundant interstellar ices are available to all nascent planetary systems.Comment: 33 pages, 7 figures including main text and supplementary materials. Published in Scienc

    The HNC/HCN Ratio in Star-Forming Regions

    Get PDF
    HNC and HCN, typically used as dense gas tracers in molecular clouds, are a pair of isomers that have great potential as a temperature probe because of temperature dependent, isomer-specific formation and destruction pathways. Previous observations of the HNC/HCN abundance ratio show that the ratio decreases with increasing temperature, something that standard astrochemical models cannot reproduce. We have undertaken a detailed parameter study on which environmental characteristics and chemical reactions affect the HNC/HCN ratio and can thus contribute to the observed dependence. Using existing gas and gas-grain models updated with new reactions and reaction barriers, we find that in static models the H + HNC gas-phase reaction regulates the HNC/HCN ratio under all conditions, except for very early times. We quantitatively constrain the combinations of H abundance and H + HNC reaction barrier that can explain the observed HNC/HCN temperature dependence and discuss the implications in light of new quantum chemical calculations. In warm-up models, gas-grain chemistry contributes significantly to the predicted HNC/HCN ratio and understanding the dynamics of star formation is therefore key to model the HNC/HCN system.Astronom

    Desorption Kinetics and Binding Energies of Small Hydrocarbons

    Get PDF
    Small hydrocarbons are an important organic reservoir in protostellar and protoplanetary environments. Constraints on desorption temperatures and binding energies of such hydrocarbons are needed for accurate predictions of where these molecules exist in the ice versus gas phase during the different stages of star and planet formation. Through a series of temperature programmed desorption experiments, we constrain the binding energies of 2- and 3-carbon hydrocarbons (C_2H_2—acetylene, C_2H_4—ethylene, C_2H_6—ethane, C_3H_4—propyne, C_3H_6—propene, and C_3H_8—propane) to 2200–4200 K in the case of pure amorphous ices, to 2400–4400 K on compact amorphous H_2O, and to 2800–4700 K on porous amorphous H_2O. The 3-carbon hydrocarbon binding energies are always larger than the 2-carbon hydrocarbon binding energies. Within the 2- and 3-carbon hydrocarbon families, the alkynes (i.e., least-saturated) hydrocarbons exhibit the largest binding energies, while the alkane and alkene binding energies are comparable. Binding energies are ~5%–20% higher on water ice substrates compared to pure ices, which is a small increase compared to what has been measured for other volatile molecules such as CO and N_2. Thus in the case of hydrocarbons, H_2O has a less pronounced effect on sublimation front locations (i.e., snowlines) in protoplanetary disks

    Effects of Impact and Target Parameters on the Results of a Kinetic Impactor: Predictions for the Double Asteroid Redirection Test (DART) Mission

    Get PDF
    The Double Asteroid Redirection Test (DART) spacecraft will impact into the asteroid Dimorphos on 2022 September 26 as a test of the kinetic impactor technique for planetary defense. The efficiency of the deflection following a kinetic impactor can be represented using the momentum enhancement factor, β, which is dependent on factors such as impact geometry and the specific target material properties. Currently, very little is known about Dimorphos and its material properties, which introduces uncertainty in the results of the deflection efficiency observables, including crater formation, ejecta distribution, and β. The DART Impact Modeling Working Group (IWG) is responsible for using impact simulations to better understand the results of the DART impact. Pre-impact simulation studies also provide considerable insight into how different properties and impact scenarios affect momentum enhancement following a kinetic impact. This insight provides a basis for predicting the effects of the DART impact and the first understanding of how to interpret results following the encounter. Following the DART impact, the knowledge gained from these studies will inform the initial simulations that will recreate the impact conditions, including providing estimates for potential material properties of Dimorphos and β resulting from DART’s impact. This paper summarizes, at a high level, what has been learned from the IWG simulations and experiments in preparation for the DART impact. While unknown, estimates for reasonable potential material properties of Dimorphos provide predictions for β of 1–5, depending on end-member cases in the strength regime

    After DART: Using the First Full-scale Test of a Kinetic Impactor to Inform a Future Planetary Defense Mission

    Get PDF
    NASA’s Double Asteroid Redirection Test (DART) is the first full-scale test of an asteroid deflection technology. Results from the hypervelocity kinetic impact and Earth-based observations, coupled with LICIACube and the later Hera mission, will result in measurement of the momentum transfer efficiency accurate to ∼10% and characterization of the Didymos binary system. But DART is a single experiment; how could these results be used in a future planetary defense necessity involving a different asteroid? We examine what aspects of Dimorphos’s response to kinetic impact will be constrained by DART results; how these constraints will help refine knowledge of the physical properties of asteroidal materials and predictive power of impact simulations; what information about a potential Earth impactor could be acquired before a deflection effort; and how design of a deflection mission should be informed by this understanding. We generalize the momentum enhancement factor β, showing that a particular direction-specific β will be directly determined by the DART results, and that a related direction-specific β is a figure of merit for a kinetic impact mission. The DART β determination constrains the ejecta momentum vector, which, with hydrodynamic simulations, constrains the physical properties of Dimorphos’s near-surface. In a hypothetical planetary defense exigency, extrapolating these constraints to a newly discovered asteroid will require Earth-based observations and benefit from in situ reconnaissance. We show representative predictions for momentum transfer based on different levels of reconnaissance and discuss strategic targeting to optimize the deflection and reduce the risk of a counterproductive deflection in the wrong direction

    After DART: Using the First Full-scale Test of a Kinetic Impactor to Inform a Future Planetary Defense Mission

    Get PDF
    After DART: Using the First Full-scale Test of a Kinetic Impactor to Inform a Future Planetary Defense Mission Thomas S. Statler 1 , Sabina D. Raducan 2 , Olivier S. Barnouin 3 , Mallory E. DeCoster 3 , Steven R. Chesley 4 , Brent Barbee 5 , Harrison F. Agrusa 6 , Saverio Cambioni 7 , Andrew F. Cheng 3 , Elisabetta Dotto 8 , Siegfried Eggl9 , Eugene G. Fahnestock 4 , Fabio Ferrari 2 , Dawn Graninger 3 , Alain Herique 10 , Isabel Herreros 11 , Masatoshi Hirabayashi 12,13 , Stavro Ivanovski 14 , Martin Jutzi 2 , Özgür Karatekin 15 , Alice Lucchetti 16 , Robert Luther 17 , Rahil Makadia 9 , Francesco Marzari 18 , Patrick Michel 19 , Naomi Murdoch 20 , Ryota Nakano13 , Jens Ormö 11 , Maurizio Pajola 16 , Andrew S. Rivkin3 , Alessandro Rossi 21 , Paul Sánchez 22 , Stephen R. Schwartz 23 , Stefania Soldini 24 , Damya Souami 19 , Angela Stickle 3 , Paolo Tortora 25 , Josep M. Trigo-Rodríguez 26,27 , Flaviane Venditti 28 , Jean-Baptiste Vincent 29 , and Kai Wünnemann 17,30 1 Planetary Defense Coordination Office and Planetary Science Division, NASA Headquarters, 300 Hidden Figures Way SW, Washington, DC 20546, USA [email protected] 2 Space Research and Planetary Sciences, Physics Institute, University of Bern, Bern, 3012, Switzerland 3 Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA 4 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA 5 NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA 6 Department of Astronomy, University of Maryland, College Park, MD 20742, USA 7 Department of Earth, Atmospheric & Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA 8 INAF-Osservatorio Astronomico di Roma, Rome, I-00078, Italy 9 Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA 10 Univ. Grenoble Alpes, CNRS, CNES, IPAG, F-38000 Grenoble, France 11 Centro de Astrobiología CSIC-INTA, Instituto Nacional de Técnica Aeroespacial, E-28850 Torrejón de Ardoz, Spain 12 Department of Geosciences, Auburn University, Auburn, AL 36849, USA 13 Department of Aerospace Engineering, Auburn University, Auburn, AL 36849, USA 14 INAF- Osservatorio Astronomico di Trieste, Trieste I-34143, Italy 15 Royal Observatory of Belgium, Belgium 16 INAF-Astronomical Observatory of Padova, Padova I-35122, Italy 17 Museum für Naturkunde—Leibniz Institute for Evolution and Biodiversity Science, Germany 18 University of Padova, Padova, Italy 19 Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Laboratoire Lagrange, Nice F-06304, France 20 Institut Supérieur de l’Aéronautique et de l’Espace (ISAE-SUPAERO), Université de Toulouse, Toulouse, France 21 IFAC-CNR, Sesto Fiorentino I-50019, Italy 22 Colorado Center for Astrodynamics Research, University of Colorado Boulder, Boulder, CO 80303, USA 23 Planetary Science Institute, Tucson, AZ 85719, USA 24 Department of Mechanical, Materials and Aerospace Engineering, University of Liverpool, Liverpool, UK 25 Alma Mater Studiorum—Università di Bologna, Department of Industrial Engineering, Interdepartmental Center for Industrial Research in Aerospace, Via Fontanelle 40—Forlì (FC)—I-47121, Italy 26 Institute of Space Sciences (ICE, CSIC), Cerdanyola del Vallès, E-08193 Barcelona, Catalonia, Spain 27 Institut d’Estudis Espacials de Catalunya (IEEC), Ed. Nexus, E-08034 Barcelona, Catalonia, Spain 28 Arecibo Observatory, University of Central Florida, HC-3 Box 53995, Arecibo, PR 00612, USA 29 German Aerospace Center, DLR Berlin, Germany 30 Freie Universität Berlin, Germany Received 2022 August 9; revised 2022 September 18; accepted 2022 September 22; published 2022 October 28 Abstract NASA’s Double Asteroid Redirection Test (DART) is the first full-scale test of an asteroid deflection technology. Results from the hypervelocity kinetic impact and Earth-based observations, coupled with LICIACube and the later Hera mission, will result in measurement of the momentum transfer efficiency accurate to ∼10% and characterization of the Didymos binary system. But DART is a single experiment; how could these results be used in a future planetary defense necessity involving a different asteroid? We examine what aspects of Dimorphos’s response to kinetic impact will be constrained by DART results; how these constraints will help refine knowledge of the physical properties of asteroidal materials and predictive power of impact simulations; what information about a potential Earth impactor could be acquired before a deflection effort; and how design of a deflection mission should be informed by this understanding. We generalize the momentum enhancement factor β, showing that a particular direction-specific β will be directly determined by the DART results, and that a related direction- specific β is a figure of merit for a kinetic impact mission. The DART β determination constrains the ejecta momentum vector, which, with hydrodynamic simulations, constrains the physical properties of Dimorphos’s near- surface. In a hypothetical planetary defense exigency, extrapolating these constraints to a newly discovered asteroid will require Earth-based observations and benefit from in situ reconnaissance. We show representative predictions for momentum transfer based on different levels of reconnaissance and discuss strategic targeting to optimize the deflection and reduce the risk of a counterproductive deflection in the wrong direction
    corecore