16 research outputs found

    Age-Related Neurodegeneration and Memory Loss in Down Syndrome

    Get PDF
    Down syndrome (DS) is a condition where a complete or segmental chromosome 21 trisomy causes variable intellectual disability, and progressive memory loss and neurodegeneration with age. Many research groups have examined development of the brain in DS individuals, but studies on age-related changes should also be considered, with the increased lifespan observed in DS. DS leads to pathological hallmarks of Alzheimer's disease (AD) by 40 or 50 years of age. Progressive age-related memory deficits occurring in both AD and in DS have been connected to degeneration of several neuronal populations, but mechanisms are not fully elucidated. Inflammation and oxidative stress are early events in DS pathology, and focusing on these pathways may lead to development of successful intervention strategies for AD associated with DS. Here we discuss recent findings and potential treatment avenues regarding development of AD neuropathology and memory loss in DS

    Cholinergic Degeneration and Alterations in the TrkA and p75NTR Balance as a Result of Pro-NGF Injection into Aged Rats

    Get PDF
    Learning and memory impairments occurring with Alzheimer's disease (AD) are associated with degeneration of the basal forebrain cholinergic neurons (BFCNs). BFCNs extend their axons to the hippocampus where they bind nerve growth factor (NGF) which is retrogradely transported to the cell body. While NGF is necessary for BFCN survival and function via binding to the high-affinity receptor TrkA, its uncleaved precursor, pro-NGF has been proposed to induce neurodegeneration via binding to the p75NTR and its coreceptor sortilin. Basal forebrain TrkA and NGF are downregulated with aging while pro-NGF is increased. Given these data, the focus of this paper was to determine a mechanism for how pro-NGF accumulation may induce BFCN degeneration. Twenty-four hours after a single injection of pro-NGF into hippocampus, we found increased hippocampal p75NTR levels, decreased hippocampal TrkA levels, and cholinergic degeneration. The data suggest that the increase in p75NTR with AD may be mediated by elevated pro-NGF levels as a result of decreased cleavage, and that pro-NGF may be partially responsible for age-related degenerative changes observed in the basal forebrain. This paper is the first in vivo evidence that pro-NGF can affect BFCNs and may do so by regulating expression of p75NTR neurotrophin receptors

    Designer Receptors Enhance Memory in a Mouse Model of Down Syndrome

    Get PDF
    Designer receptors exclusively activated by designer drugs (DREADDs) are novel and powerful tools to investigate discrete neuronal populations in the brain. We have used DREADDs to stimulate degenerating neurons in a Down syndrome (DS) model, Ts65Dn mice. Individuals with DS develop Alzheimer\u27s disease (AD) neuropathology and have elevated risk for dementia starting in their 30s and 40s. Individuals with DS often exhibit working memory deficits coupled with degeneration of the locus coeruleus (LC) norepinephrine (NE) neurons. It is thought that LC degeneration precedes other AD-related neuronal loss, and LC noradrenergic integrity is important for executive function, working memory, and attention. Previous studies have shown that LC-enhancing drugs can slow the progression of AD pathology, including amyloid aggregation, oxidative stress, and inflammation. We have shown that LC degeneration in Ts65Dn mice leads to exaggerated memory loss and neuronal degeneration. We used a DREADD, hM3Dq, administered via adeno-associated virus into the LC under a synthetic promoter, PRSx8, to selectively stimulate LC neurons by exogenous administration of the inert DREADD ligand clozapine-N-oxide. DREADD stimulation of LC-NE enhanced performance in a novel object recognition task and reduced hyperactivity in Ts65Dn mice, without significant behavioral effects in controls. To confirm that the noradrenergic transmitter system was responsible for the enhanced memory function, the NE prodrug l-threo-dihydroxyphenylserine was administered in Ts65Dn and normosomic littermate control mice, and produced similar behavioral results. Thus, NE stimulation may prevent memory loss in Ts65Dn mice, and may hold promise for treatment in individuals with DS and dementia

    Opportunities, barriers, and recommendations in down syndrome research

    Get PDF
    Recent advances in medical care have increased life expectancy and improved the quality of life for people with Down syndrome (DS). These advances are the result of both pre-clinical and clinical research but much about DS is still poorly understood. In 2020, the NIH announced their plan to update their DS research plan and requested input from the scientific and advocacy community. The National Down Syndrome Society (NDSS) and the LuMind IDSC Foundation worked together with scientific and medical experts to develop recommendations for the NIH research plan. NDSS and LuMind IDSC assembled over 50 experts across multiple disciplines and organized them in eleven working groups focused on specific issues for people with DS. This review article summarizes the research gaps and recommendations that have the potential to improve the health and quality of life for people with DS within the next decade. This review highlights many of the scientific gaps that exist in DS research. Based on these gaps, a multidisciplinary group of DS experts has made recommendations to advance DS research. This paper may also aid policymakers and the DS community to build a comprehensive national DS research strategy

    Development of an Intact Blood-Brain-Barrier in Brain Tissue Transplants is Dependent on the Site of Transplantation

    No full text
    Transplantation of fetal septal forebrain tissue was performed to the anterior chamber of the eye, or intracranially to the rostral hippocampal formation in rats, to evaluate the impact of transplantation site on the development of an intact blood-brain barrier (BBB). The tissue was studied at 1, 2, 3, and 4 wk following transplantation by means of intravenous injection of Trypan blue, which is a vital stain not normally penetrating the BBB, as well as with an antibody specifically directed against the rat BBB, SMI71. In the intraocular septal transplants, there was a significant leakage of Trypan blue 1 wk postgrafting, associated with a few laminin-immunoreactive blood vessels that did not contain any SMI71-immunoreactivity. However, at 2 wk postgrafting, the intraocular grafts exhibited an extensive plexus of thin-walled blood vessels expressing SMI71 immunoreactivity and no Trypan blue leakage. Thus, it appeared that a BBB had developed to some degree by 2 wk postgrafting in oculo. In the intracranial grafts, on the other hand, Trypan blue leakage could be seen as long as 3 wk postgrafting, and a dense plexus of blood vessels with SMI71 immunoreactivity was first seen at 4 wk postgrafting. Thus, the development of Trypan blue impermeability was delayed with 1 to 2 wk in the intracranial versus the intraocular grafts. Control experiments using psychological stress in adult rats as a means to transiently disrupt the BBB revealed that an increase in Trypan blue leakage correlated well with the disappearance of SMI71 immunoreactivity. Taken together, these studies demonstrate that the site of transplantation can influence the development of an intact BBB in neural tissue grafts

    Estrogen restores cognition and cholinergic phenotype in an animal model of Down syndrome

    No full text
    Estrogen maintains normal function of basal forebrain (BF) cholinergic neurons and estrogen replacement therapy (ERT) has therefore been proposed as a therapy for Alzheimer\u27s disease (AD). We provide evidence to support this hypothesis in an animal model of Down syndrome (DS), a chromosome 16 segmental trisomy (Ts65Dn) mouse. These mice develop cholinergic degeneration similar to young adults with DS and AD patients. ERT has not been tested in women with DS, even though they are more likely than normosomic women to develop early menopause and AD. Female Ts65Dn and normosomic mice (11-15 months) received a subcutaneous estrogen pellet or a sham operation. After 60 days, estrogen treatment improved learning of a T-maze task and normalized behavior in the Ts65Dn mice in reversal learning of the task, a measure of cognitive flexibility. Stereological evaluation of choline acetyltransferase (ChAT) immunopositive BF neurons showed that estrogen increased cell size and total number of cholinergic neurons in the medial septum of Ts65Dn mice. In addition, estrogen increased NGF protein levels in the BF of trisomic mice. These findings support the emerging hypothesis that estrogen may play a protective role during neurodegeneration and cognitive decline, particularly in cholinergic BF neuronal systems underlying cognition. The findings also indicate that estrogen may act, at least partially, via endogenous growth factors. Collectively, the data suggest that ERT may be a viable therapeutic approach for women with DS coupled with dementia. © 2002 Elsevier Science Inc. All rights reserved
    corecore