26 research outputs found

    New Insights into Alzheimer's Disease Progression: A Combined TMS and Structural MRI Study

    Get PDF
    BACKGROUND: Combination of structural and functional data of the human brain can provide detailed information of neurodegenerative diseases and the influence of the disease on various local cortical areas. METHODOLOGY AND PRINCIPAL FINDINGS: To examine the relationship between structure and function of the brain the cortical thickness based on structural magnetic resonance images and motor cortex excitability assessed with transcranial magnetic stimulation were correlated in Alzheimer's disease (AD) and mild cognitive impairment (MCI) patients as well as in age-matched healthy controls. Motor cortex excitability correlated negatively with cortical thickness on the sensorimotor cortex, the precuneus and the cuneus but the strength of the correlation varied between the study groups. On the sensorimotor cortex the correlation was significant only in MCI subjects. On the precuneus and cuneus the correlation was significant both in AD and MCI subjects. In healthy controls the motor cortex excitability did not correlate with the cortical thickness. CONCLUSIONS: In healthy subjects the motor cortex excitability is not dependent on the cortical thickness, whereas in neurodegenerative diseases the cortical thinning is related to weaker cortical excitability, especially on the precuneus and cuneus. However, in AD subjects there seems to be a protective mechanism of hyperexcitability on the sensorimotor cortex counteracting the prominent loss of cortical volume since the motor cortex excitability did not correlate with the cortical thickness. Such protective mechanism was not found on the precuneus or cuneus nor in the MCI subjects. Therefore, our results indicate that the progression of the disease proceeds with different dynamics in the structure and function of neuronal circuits from normal conditions via MCI to AD

    Left dorsal premotor cortex and supramarginal gyrus complement each other during rapid action reprogramming

    No full text
    The ability to discard a prepared action plan in favor of an alternative action is critical when facing sudden environmental changes. We tested whether the functional contribution of left supramarginal gyrus (SMG) during action reprogramming depends on the functional integrity of left dorsal premotor cortex (PMd). Adopting a dual-site repetitive transcranial magnetic stimulation (rTMS) strategy, we first transiently disrupted PMd with “off-line” 1 Hz rTMS and then applied focal “on-line” rTMS to SMG while human subjects performed a spatially precued reaction time (RT) task. Effective on-line rTMS of SMG but not sham rTMS of SMG increased errors when subjects had to reprogram their action in response to an invalid precue regardless of the type of preceding off-line rTMS. This suggests that left SMG primarily contributes to the on-line updating of actions by suppressing invalidly prepared responses. On-line rTMS of SMG additionally increased RTs for correct responses in invalidly precued trials, but only after off-line rTMS of PMd. We infer that off-line rTMS caused an additional dysfunction of PMd, which increased the functional relevance of SMG for rapid activation of the correct response, and sensitized SMG to the disruptive effects of on-line rTMS. These results not only provide causal evidence that left PMd and SMG jointly contribute to action reprogramming, but also that the respective functional weight of these areas can be rapidly redistributed. This mechanism might constitute a generic feature of functional networks that allows for rapid functional compensation in response to focal dysfunctions

    Human face processing is tuned to sexual age preferences

    No full text
    Human faces can motivate nurturing behaviour or sexual behaviour when adults see a child or an adult face, respectively. This suggests that face processing is tuned to detecting age cues of sexual maturity to stimulate the appropriate reproductive behaviour: either caretaking or mating. In paedophilia, sexual attraction is directed to sexually immature children. Therefore, we hypothesized that brain networks that normally are tuned to mature faces of the preferred gender show an abnormal tuning to sexual immature faces in paedophilia. Here, we use functional magnetic resonance imaging (fMRI) to test directly for the existence of a network which is tuned to face cues of sexual maturity. During fMRI, participants sexually attracted to either adults or children were exposed to various face images. In individuals attracted to adults, adult faces activated several brain regions significantly more than child faces. These brain regions comprised areas known to be implicated in face processing, and sexual processing, including occipital areas, the ventrolateral prefrontal cortex and, subcortically, the putamen and nucleus caudatus. The same regions were activated in paedophiles, but with a reversed preferential response pattern

    Increased functional connectivity in a population at risk of developing Parkinson's disease

    No full text
    Background While the concept of prodromal Parkinson's disease (PD) is well established, reliable markers for the diagnosis of this disease stage are still lacking. We investigated the functional connectivity of the putamina in a resting-state functional MRI analysis in persons with at least two prodromal factors for PD, which is considered a high risk for PD (HRPD) group, in comparison to PD patients and controls. Methods We included 16 PD patients, 20 healthy controls and 20 HRPD subjects. Resting state echo planar images and anatomical T1-weighted images were acquired with a Siemens Prisma 3 T scanner. The computation of correlation maps of the left and the right putamen to the rest of the brain was done in a voxel-wise approach using the REST toolbox. Finally, group differences in the correlation maps were compared on voxel-level and summarized in cluster z-statistics. Results Compared to both PD patients and healthy controls, the HRPD group showed higher functional connectivity of both putamina to brain regions involved in execution of motion and coordination (cerebellum, vermis, pre- and postcentral gyrus, supplementary motor area) as well as the planning of movement (precuneus, cuneus, superior medial frontal lobe). Conclusions Higher functional connectivity of the putamina of HRPD subjects to other brain regions involved in motor execution and planning may indicate a compensatory mechanism. Follow-up evaluation and independent longitudinal studies should test whether our results reflect a dynamic process associated with a prodromal PD state

    Association of Hippocampal Subfields, CSF Biomarkers, and Cognition in Patients With Parkinson Disease Without Dementia

    No full text
    Objectives: To examine whether hippocampal volume loss is primarily associated with cognitive status or pathologic Amyloid-β 1-42 (Aβ42) levels, this study compared hippocampal subfield volumes between both Parkinson's Disease (PD) patients with (PD-MCI) and without (PD-CN) cognitive impairment and between patients with low and high Aβ42 levels, in addition exploring the relationship between hippocampal subfield volumes, CSF biomarkers (Aβ42, phosphorylated and total tau), neuropsychological tests, and activities of daily living. Methods: Forty-five non-demented PD patients underwent CSF analyses and magnetic resonance imaging as well as comprehensive motor and neuropsychological examinations. Hippocampal segmentation was conducted using FreeSurfer image analysis suite 6.0. Regression models were used to compare hippocampal subfield volumes between groups, and partial correlations defined the association between variables while controlling for intracranial volume (ICV). Results: Linear regressions revealed cognitive group as a statistically significant predictor of both the hippocampal-amygdaloid transition area (HATA; β = -0.23, 95% CI: -0.44 to -0.02) and the Cornu Ammonis 1 region (CA1; β = -0.28, 95% CI: -0.56 to -0.02), independent of disease duration and ICV, with PD-MCI patients showing significantly smaller volumes than PD-CN. In contrast, no subfields were predicted by Aβ42 levels. Smaller hippocampal volumes were associated with worse performance on memory, language, spatial working memory and executive functioning tests. The subiculum was negatively correlated with total tau levels (r = -0.37, 95% CI: -0.60 to -0.09). Conclusion: Cognitive status, but not CSF Aβ42, predicted hippocampal volumes, specifically the CA1 and HATA. Hippocampal subfields were associated with various cognitive domains, as well as with tau pathology
    corecore