503 research outputs found

    Robustness of force and stress inference in an epithelial tissue

    Full text link
    During morphogenesis, the shape of a tissue emerges from collective cellular behaviors, which are in part regulated by mechanical and biochemical interactions between cells. Quantification of force and stress is therefore necessary to analyze the mechanisms controlling tissue morphogenesis. Recently, a mechanical measurement method based on force inference from cell shapes and connectivity has been developed. It is non-invasive, and can provide space-time maps of force and stress within an epithelial tissue, up to prefactors. We previously performed a comparative study of three force-inference methods, which differ in their approach of treating indefiniteness in an inverse problem between cell shapes and forces. In the present study, to further validate and compare the three force inference methods, we tested their robustness by measuring temporal fluctuation of estimated forces. Quantitative data of cell-level dynamics in a developing tissue suggests that variation of forces and stress will remain small within a short period of time (∼\simminutes). Here, we showed that cell-junction tensions and global stress inferred by the Bayesian force inference method varied less with time than those inferred by the method that estimates only tension. In contrast, the amplitude of temporal fluctuations of estimated cell pressures differs less between different methods. Altogether, the present study strengthens the validity and robustness of the Bayesian force-inference method.Comment: 4 pages, 4 figure

    Differentially expressed genes between drought-tolerant and drought-sensitive barley genotypes in response to drought stress during the reproductive stage

    Get PDF
    Drought tolerance is a key trait for increasing and stabilizing barley productivity in dry areas worldwide. Identification of the genes responsible for drought tolerance in barley (Hordeum vulgare L.) will facilitate understanding of the molecular mechanisms of drought tolerance, and also facilitate the genetic improvement of barley through marker-assisted selection or gene transformation. To monitor the changes in gene expression at the transcriptional level in barley leaves during the reproductive stage under drought conditions, the 22K Affymetrix Barley 1 microarray was used to screen two drought-tolerant barley genotypes, Martin and Hordeum spontaneum 41-1 (HS41-1), and one drought-sensitive genotype Moroc9-75. Seventeen genes were expressed exclusively in the two drought-tolerant genotypes under drought stress, and their encoded proteins may play significant roles in enhancing drought tolerance through controlling stomatal closure via carbon metabolism (NADP malic enzyme, NADP-ME, and pyruvate dehydrogenase, PDH), synthesizing the osmoprotectant glycine-betaine (C-4 sterol methyl oxidase, CSMO), generating protectants against reactive-oxygen-species scavenging (aldehyde dehydrogenase,ALDH, ascorbate-dependent oxidoreductase, ADOR), and stabilizing membranes and proteins (heat-shock protein 17.8, HSP17.8, and dehydrin 3, DHN3). Moreover, 17 genes were abundantly expressed in Martin and HS41-1 compared with Moroc9-75 under both drought and control conditions. These genes were possibly constitutively expressed in drought-tolerant genotypes. Among them, seven known annotated genes might enhance drought tolerance through signalling [such as calcium-dependent protein kinase (CDPK) and membrane steroid binding protein (MSBP)], anti-senescence (G2 pea dark accumulated protein, GDA2), and detoxification (glutathione S-transferase, GST) pathways. In addition, 18 genes, including those encoding Δl-pyrroline-5-carboxylate synthetase (P5CS), protein phosphatase 2C-like protein (PP2C), and several chaperones, were differentially expressed in all genotypes under drought; thus they were more likely to be general drought-responsive genes in barley. These results could provide new insights into further understanding of drought-tolerance mechanisms in barley

    Features of SNP and SSR diversity in a set of ICARDA barley germplasm collection

    Get PDF
    Detection and utilization of genetic variation available in the germplasm collection for crop improvement have been the prime activities of breeders. Here a set of ICARDA barley germplasm collection comprising of 185 cultivated (Hordeum vulgare L.) and 38 wild (H. spontaneum L.) genotypes originated from 30 countries of four continents was genotyped with 68 single nucleotide polymorphism (SNP) and 45 microsatellite or simple sequence repeat (SSR) markers derived from genes (expressed sequence tags, ESTs). As two SNP markers provided 2 and 3 datapoints, a total of 71 SNPs were surveyed that yielded a total of 143 alleles. The number of SSR alleles per locus ranged from 3 to 22 with an average of 7.9 per marker. Average PIC (polymorphism information content) value for SSR and SNP markers were recorded as 0.63 and 0.38, respectively. Heterogeneity was recorded at both SNP and SSR loci in an average of 5.72 and 12.42% accessions, respectively. Genetic similarity matrices for SSR and SNP allelic data were highly correlated (r = 0.75, P\0.005) and therefore allelic data for both markers were combined and analyzed for understanding the genetic relationships among the germplasm surveyed. Majority of clusters/ subclusters were found to contain genotypes from the same geographic origins. While comparing the genetic diversity, the accessions coming from Middle East Asia and North East Asia showed more diversity as compared to that of other geographic regions. Majority of countries representing Africa, Middle East Asia, North East Asia and Arabian Peninsula included the genotypes that contained rare alleles. As expected, spontaneum accessions, as compared to vulgare accessions, showed a higher number of total alleles, higher number of alleles per locus, higher effective number of alleles and higher allelic richness and a higher number of rare alleles were observed. In summary, the examined ICARDA germplasm set showed ample natural genetic variation that can be harnessed for future breeding of barley as climate change and sustainability have become important throughout all growing areas of the world, drought/ heat tolerance being the most important ones

    Dynamical derivation of Bode's law

    Get PDF
    In a planetary or satellite system, idealized as n small bodies in initially coplanar, concentric orbits around a large central body, obeying Newtonian point-particle mechanics, resonant perturbations will cause dynamical evolution of the orbital radii except under highly specific mutual relationships, here derived analytically apparently for the first time. In particular, the most stable situation is achieved (in this idealized model) only when each planetary orbit is roughly twice as far from the Sun as the preceding one, as observed empirically already by Titius (1766) and Bode (1778) and used in both the discoveries of Uranus (1781) and the Asteroid Belt (1801). ETC.Comment: 27 page

    A quantum-like description of the planetary systems

    Full text link
    The Titius-Bode law for planetary distances is reviewed. A model describing the basic features of this rule in the "quantum-like" language of a wave equation is proposed. Some considerations about the 't Hooft idea on the quantum behaviour of deterministic systems with dissipation are discussed.Comment: LaTex file, 17 pages, no figures. Version published in Foundations of Physics, August 200

    Colloquium: Mechanical formalisms for tissue dynamics

    Full text link
    The understanding of morphogenesis in living organisms has been renewed by tremendous progressin experimental techniques that provide access to cell-scale, quantitative information both on theshapes of cells within tissues and on the genes being expressed. This information suggests that ourunderstanding of the respective contributions of gene expression and mechanics, and of their crucialentanglement, will soon leap forward. Biomechanics increasingly benefits from models, which assistthe design and interpretation of experiments, point out the main ingredients and assumptions, andultimately lead to predictions. The newly accessible local information thus calls for a reflectionon how to select suitable classes of mechanical models. We review both mechanical ingredientssuggested by the current knowledge of tissue behaviour, and modelling methods that can helpgenerate a rheological diagram or a constitutive equation. We distinguish cell scale ("intra-cell")and tissue scale ("inter-cell") contributions. We recall the mathematical framework developpedfor continuum materials and explain how to transform a constitutive equation into a set of partialdifferential equations amenable to numerical resolution. We show that when plastic behaviour isrelevant, the dissipation function formalism appears appropriate to generate constitutive equations;its variational nature facilitates numerical implementation, and we discuss adaptations needed in thecase of large deformations. The present article gathers theoretical methods that can readily enhancethe significance of the data to be extracted from recent or future high throughput biomechanicalexperiments.Comment: 33 pages, 20 figures. This version (26 Sept. 2015) contains a few corrections to the published version, all in Appendix D.2 devoted to large deformation

    Identification and validation of a core set of informative genic SSR and SNP markers for assaying functional diversity in barley

    Get PDF
    A ‘core set’ of 28 simple sequence repeat (SSR) and 28 single nucleotide polymorphism (SNP) markers for barley was developed after screening six diverse genotypes (DGs) representing six countries (Afghanistan, Pakistan, Algeria, Egypt, Jordan and Syria) with 50 SSR and 50 SNP markers derived from expressed sequence tags (ESTs). The markers of the core set are single locus with very high quality amplifications, high polymorphism information content (PIC) and are distributed across the barley genome. PIC values for the selected SSR and SNP markers ranged between 0.32–0.72 (average 0.58) and 0.28–0.50 (average 0.42), respectively. To make the SNP genotyping cost effective, CAPS (cleaved amplified polymorphic sequence) and indel assays were developed for 23 markers and the remaining 5 SNP markers were optimized for pyrosequencing. A high coefficient of correlations (r = 0.96, P < 0.005) between the genetic similarity matrices of SSR and SNP genotyping data of the core set on diverse genotypes (DGs) and their similar groupings according to the geographical distribution in both SSR and SNP phenograms with high bootstrap values underline the utility and reliability of the core set. A comparative allelic and sequence diversity for SSR and SNP markers between the DGs and six elite parental genotypes (PGs) of mapping populations showed comparable diverse nature of two germplasm sets. However, unique SNPs and indels were observed in both germplasm sets providing more datapoints for analysing haplotypes in a better way for the corresponding SNP marke

    Towards whole genome association genetic scans in barley

    Get PDF
    In crop plants, the potential of association mapping, with the objective of estimating the position of genes conferring a specific trait or phenotype using linkage disequilibrium (LD) between alleles of genetically mapped markers, has recently become a focus of considerable interest. One major attraction of association genetics is the potential to locate genes responsible for a wide range of traits in a single sample population using pre-existing phenotypic data that has been collected during crop improvement and cultivar registration programs. This study testify to the potential of exploiting whole genome LD-scans to locate genes controlling key biological traits in cultivated barley. We are currently increasing the density of markers, particularly those with a MAF >0.1, by developing two further pilot OPAs, which in due course will be compressed into two commercially available platforms for high throughput low cost genotyping in cultivated barley. In the immediate future these will be used in large association genetic studies in the UK and US involving approximately 4000 barley genotypes with the aim of realising the potential for whole genome association genetic scans in cultivated barley

    Genetic dissection of photoperiod response based on GWAS of pre-anthesis phase duration in spring barley

    Get PDF
    Heading time is a complex trait, and natural variation in photoperiod responses is a major factor controlling time to heading, adaptation and grain yield. In barley, previous heading time studies have been mainly conducted under field conditions to measure total days to heading. We followed a novel approach and studied the natural variation of time to heading in a world-wide spring barley collection (218 accessions), comprising of 95 photoperiod-sensitive (Ppd-H1) and 123 accessions with reduced photoperiod sensitivity (ppd-H1) to long-day (LD) through dissecting pre-anthesis development into four major stages and sub-phases. The study was conducted under greenhouse (GH) conditions (LD; 16/8 h; ∼20/∼16°C day/night). Genotyping was performed using a genome-wide high density 9K single nucleotide polymorphisms (SNPs) chip which assayed 7842 SNPs. We used the barley physical map to identify candidate genes underlying genome-wide association scans (GWAS). GWAS for pre-anthesis stages/sub-phases in each photoperiod group provided great power for partitioning genetic effects on floral initiation and heading time. In addition to major genes known to regulate heading time under field conditions, several novel QTL with medium to high effects, including new QTL having major effects on developmental stages/sub-phases were found to be associated in this study. For example, highly associated SNPs tagged the physical regions around HvCO1 (barley CONSTANS1) and BFL (BARLEY FLORICAULA/LEAFY) genes. Based upon our GWAS analysis, we propose a new genetic network model for each photoperiod group, which includes several newly identified genes, such as several HvCO-like genes, belonging to different heading time pathways in barley
    • …
    corecore