1,327 research outputs found

    Methylmercury neurotoxicity in Amazonian children downstream from gold mining.

    Get PDF
    In widespread informal gold mining in the Amazon Basin, mercury is used to capture the gold particles as amalgam. Releases of mercury to the environment have resulted in the contamination of freshwater fish with methylmercury. In four comparable Amazonian communities, we examined 351 of 420 eligible children between 7 and 12 years of age. In three Tapajós villages with the highest exposures, more than 80% of 246 children had hair-mercury concentrations above 10 microg/g, a limit above which adverse effects on brain development are likely to occur. Neuropsychological tests of motor function, attention, and visuospatial performance showed decrements associated with the hair-mercury concentrations. Especially on the Santa Ana form board and the Stanford-Binet copying tests, similar associations were also apparent in the 105 children from the village with the lowest exposures, where all but two children had hair-mercury concentrations below 10 microg/g. Although average exposure levels may not have changed during recent years, prenatal exposure levels are unknown, and exact dose relationships cannot be generated from this cross-sectional study. However, the current mercury pollution seems sufficiently severe to cause adverse effects on brain development

    Colossal Positive Magnetoresistance in a Doped Nearly Magnetic Semiconductor

    Get PDF
    We report on a positive colossal magnetoresistance (MR) induced by metallization of FeSb2_{2}, a nearly magnetic or "Kondo" semiconductor with 3d ions. We discuss contribution of orbital MR and quantum interference to enhanced magnetic field response of electrical resistivity.Comment: 5 pages, 5 figure

    Genetic diversity of Mycobacterium tuberculosis in Peru and exploration of phylogenetic associations with drug resistance.

    Get PDF
    BACKGROUND: There is limited available data on the strain diversity of M tuberculosis in Peru, though there may be interesting lessons to learn from a setting where multidrug resistant TB has emerged as a major problem despite an apparently well-functioning DOTS control programme. METHODS: Spoligotyping was undertaken on 794 strains of M tuberculosis collected between 1999 and 2005 from 553 community-based patients and 241 hospital-based HIV co-infected patients with pulmonary tuberculosis in Lima, Peru. Phylogenetic and epidemiologic analyses permitted identification of clusters and exploration of spoligotype associations with drug resistance. RESULTS: Mean patient age was 31.9 years, 63% were male and 30.4% were known to be HIV+. Rifampicin mono-resistance, isoniazid mono-resistance and multidrug resistance (MDR) were identified in 4.7%, 8.7% and 17.3% of strains respectively. Of 794 strains from 794 patients there were 149 different spoligotypes. Of these there were 27 strains (3.4%) with novel, unique orphan spoligotypes. 498 strains (62.7%) were clustered in the nine most common spoligotypes: 16.4% SIT 50 (clade H3), 12.3% SIT 53 (clade T1), 8.3% SIT 33 (LAM3), 7.4% SIT 42 (LAM9), 5.5% SIT 1 (Beijing), 3.9% SIT 47 (H1), 3.0% SIT 222 (clade unknown), 3.0% SIT1355 (LAM), and 2.8% SIT 92 (X3). Amongst HIV-negative community-based TB patients no associations were seen between drug resistance and specific spoligotypes; in contrast HIV-associated MDRTB, but not isoniazid or rifampicin mono-resistance, was associated with SIT42 and SIT53 strains. CONCLUSION: Two spoligotypes were associated with MDR particularly amongst patients with HIV. The MDR-HIV association was significantly reduced after controlling for SIT42 and SIT53 status; residual confounding may explain the remaining apparent association. These data are suggestive of a prolonged, clonal, hospital-based outbreak of MDR disease amongst HIV patients but do not support a hypothesis of strain-specific propensity for the acquisition of resistance-conferring mutations

    Diffraction of light by topological defects in liquid crystals

    Full text link
    We study light scattering by a hedgehog-like and linear disclination topological defects in a nematic liquid crystal by a metric approach. Light propagating near such defects feels an effective metric equivalent to the spatial part of the global monopole and cosmic string geometries. We obtain the scattering amplitude and the differential and total scattering cross section for the case of the hedgehog defect, in terms of the characteristic parameters of the liquid crystal. Studying the disclination case, a cylindrical partial wave method is developed. As an application of the previous developments, we also examine the temperature influence on the localization of the diffraction patterns.Comment: Correcting some typos,15 pages, 3 figures, accepted for publication in Liquid Crystal

    Antibiotic-related gut dysbiosis induces lung immunodepression and worsens lung infection in mice.

    Get PDF
    Gut dysbiosis due to the adverse effects of antibiotics affects outcomes of lung infection. Previous murine models relied on significant depletion of both gut and lung microbiota, rendering the analysis of immune gut-lung cross-talk difficult. Here, we study the effects of antibiotic-induced gut dysbiosis without lung dysbiosis on lung immunity and the consequences on acute P. aeruginosa lung infection. C57BL6 mice received 7 days oral vancomycin-colistin, followed by normal regimen or fecal microbial transplant or Fms-related tyrosine kinase 3 ligand (Flt3-Ligand) over 2 days, and then intra-nasal P. aeruginosa strain PAO1. Gut and lung microbiota were studied by next-generation sequencing, and lung infection outcomes were studied at 24 h. Effects of vancomycin-colistin on underlying immunity and bone marrow progenitors were studied in uninfected mice by flow cytometry in the lung, spleen, and bone marrow. Vancomycin-colistin administration induces widespread cellular immunosuppression in both the lung and spleen, decreases circulating hematopoietic cytokine Flt3-Ligand, and depresses dendritic cell bone marrow progenitors leading to worsening of P. aeruginosa lung infection outcomes (bacterial loads, lung injury, and survival). Reversal of these effects by fecal microbial transplant shows that these alterations are related to gut dysbiosis. Recombinant Flt3-Ligand reverses the effects of antibiotics on subsequent lung infection. These results show that gut dysbiosis strongly impairs monocyte/dendritic progenitors and lung immunity, worsening outcomes of P. aeruginosa lung infection. Treatment with a fecal microbial transplant or immune stimulation by Flt3-Ligand both restore lung cellular responses to and outcomes of P. aeruginosa following antibiotic-induced gut dysbiosis

    Multiple glass transitions in star polymer mixtures: Insights from theory and simulations

    Full text link
    The glass transition in binary mixtures of star polymers is studied by mode coupling theory and extensive molecular dynamics computer simulations. In particular, we have explored vitrification in the parameter space of size asymmetry δ\delta and concentration ρ2\rho_2 of the small star polymers at fixed concentration of the large ones. Depending on the choice of parameters, three different glassy states are identified: a single glass of big polymers at low δ\delta and low ρ2\rho_2, a double glass at high δ\delta and low ρ2\rho_2, and a novel double glass at high ρ2\rho_2 and high δ\delta which is characterized by a strong localization of the small particles. At low δ\delta and high ρ2\rho_2 there is a competition between vitrification and phase separation. Centered in the (δ,ρ2)(\delta, \rho_2)-plane, a liquid lake shows up revealing reentrant glass formation. We compare the behavior of the dynamical density correlators with the predictions of the theory and find remarkable agreement between the two.Comment: 15 figures, to be published in Macromolecule

    Epitaxial growth in dislocation-free strained alloy films: Morphological and compositional instabilities

    Full text link
    The mechanisms of stability or instability in the strained alloy film growth are of intense current interest to both theorists and experimentalists. We consider dislocation-free, coherent, growing alloy films which could exhibit a morphological instability without nucleation. We investigate such strained films by developing a nonequilibrium, continuum model and by performing a linear stability analysis. The couplings of film-substrate misfit strain, compositional stress, deposition rate, and growth temperature determine the stability of film morphology as well as the surface spinodal decomposition. We consider some realistic factors of epitaxial growth, in particular the composition dependence of elastic moduli and the coupling between top surface and underlying bulk of the film. The interplay of these factors leads to new stability results. In addition to the stability diagrams both above and below the coherent spinodal temperature, we also calculate the kinetic critical thickness for the onset of instability as well as its scaling behavior with respect to misfit strain and deposition rate. We apply our results to some real growth systems and discuss the implications related to some recent experimental observations.Comment: 26 pages, 13 eps figure

    Alignment between PIN1 Polarity and Microtubule Orientation in the Shoot Apical Meristem Reveals a Tight Coupling between Morphogenesis and Auxin Transport

    Get PDF
    Morphogenesis during multicellular development is regulated by intercellular signaling molecules as well as by the mechanical properties of individual cells. In particular, normal patterns of organogenesis in plants require coordination between growth direction and growth magnitude. How this is achieved remains unclear. Here we show that in Arabidopsis thaliana, auxin patterning and cellular growth are linked through a correlated pattern of auxin efflux carrier localization and cortical microtubule orientation. Our experiments reveal that both PIN1 localization and microtubule array orientation are likely to respond to a shared upstream regulator that appears to be biomechanical in nature. Lastly, through mathematical modeling we show that such a biophysical coupling could mediate the feedback loop between auxin and its transport that underlies plant phyllotaxis
    corecore