3,413 research outputs found
Multi-wavelength, all-solid-state, continuous wave mode locked picosecond Raman laser
We demonstrate the operation of a cascaded continuous wave (CW) mode-locked Raman oscillator. The output pulses were compressed from 28 ps at 532 nm down to 6.5 ps at 559 nm (first Stokes) and 5.5 ps at 589 nm (second Stokes). The maximum output was 2.5 W at 559 nm and 1.4 W at 589 nm with slope efficiencies up to 52%. This technique allows simple and efficient generation of short-pulse radiation to the cascaded Stokes wavelengths, extending the mode-locked operation of Raman lasers to a wider range of visible wavelengths between 500 - 650 nm based on standard inexpensive picosecond Nd:YAG oscillators
The scattering map in two coupled piecewise-smooth systems, with numerical application to rocking blocks
We consider a non-autonomous dynamical system formed by coupling two
piecewise-smooth systems in \RR^2 through a non-autonomous periodic
perturbation. We study the dynamics around one of the heteroclinic orbits of
one of the piecewise-smooth systems. In the unperturbed case, the system
possesses two normally hyperbolic invariant manifolds of dimension two
with a couple of three dimensional heteroclinic manifolds between them. These
heteroclinic manifolds are foliated by heteroclinic connections between
tori located at the same energy levels. By means of the {\em impact map} we
prove the persistence of these objects under perturbation. In addition, we
provide sufficient conditions of the existence of transversal heteroclinic
intersections through the existence of simple zeros of Melnikov-like functions.
The heteroclinic manifolds allow us to define the {\em scattering map}, which
links asymptotic dynamics in the invariant manifolds through heteroclinic
connections. First order properties of this map provide sufficient conditions
for the asymptotic dynamics to be located in different energy levels in the
perturbed invariant manifolds. Hence we have an essential tool for the
construction of a heteroclinic skeleton which, when followed, can lead to the
existence of Arnol'd diffusion: trajectories that, on large time scales,
destabilize the system by further accumulating energy. We validate all the
theoretical results with detailed numerical computations of a mechanical system
with impacts, formed by the linkage of two rocking blocks with a spring
HST/FOS spectra of PG 1351+64: An intrinsic absorber at low redshift
A 1 A resolution spectra of the nearby (z = 0.08797) Seyfert galaxy PG 1351+64 taken with the Faint Object Spectrograph (FOS) onboard the Hubble Space Telescope is presented. Spectral coverage runs from 1200-3200 A in the observed frame and includes emission and absorption features due to Ly-alpha, N 5, Si 4, C 4, and Mg 2. Three distinct intrinsic absorption systems in Ly-alpha, N 5, Si 4, and C 4, and tentatively in Mg 2, at velocities of 900 km/s, 1630 km/s, and 2900 km/s (plus or minus 100 km/s) relative to the emission-line redshift of the QSO were detected. The maximum relative velocity of these absorbers is less than 5000 km/s and therefore does not meet Weymann, Carswell, & Smith's criteria for Broad-Absorption-Line (BAL) QSO's at high-z. However, the absorptions are almost certainly intrinsic to the QSO given the low redshift of this object. In addition, PG 1351+64 is marginally radio-quiet, as are all BALQSO's, based on recent estimates of the radio-loud/radio-quiet dividing line. The narrow velocity width, less than 500 km/s, and low outflow velocities of the absorption systems are more similar to so called 'associated absorbers' seen at high-z in radio-loud quasars, but whose absorptions are thought to arise in clouds much farther from the nucleus (greater than 1 kpc) than are BAL clouds (1-10 pc). Despite the qualitative resemblance to the associated absorbers, the absorption systems in PG 1351+64 appear to be the low-luminosity analogs of BALQSO absorption troughs. The lower observed outflow velocities in PG 1351+64 are due to the much lower luminosity of the nuclear source in comparison to the high-z, high-luminosity BALQSO's. In addition, 'satellite' emission lines displaced 4000-5000 km/s blueward and redward of the Mg 2 emission were discovered
Superconducting/magnetic three state nanodevice for memory and reading applications
We present a simple nanodevice that can operate in two modes: i) three-state
memory and ii) reading device. The nanodevice is fabricated with an array of
ordered triangular-shaped nanomagnets embedded in a superconducting thin film.
The input signal is ac current and the output signal is dc voltage. Vortex
ratchet effect in combination with out of plane magnetic anisotropy of the
nanomagnets is the background physics which governs the nanodevice performance.Comment: 10 pages, 4 figure
Integral equation mei applied to three-dimensional arbitrary surfaces
The authors present a new formulation of the integral equation of the measured equation of invariance (MEI) as a confined field integral equation discretised by the method of moments, in which the use of numerically derived testing functions results in an approximately sparse linear system with storage memory requirements and a CPU time for computing the matrix coefficients proportional to the number of unknowns.Peer ReviewedPostprint (published version
- …