87 research outputs found

    Parasympathetic Tone Changes in Anesthetized Horses after Surgical Stimulation, and Morphine, Ketamine, and Dobutamine Administration

    Get PDF
    Autonomic nervous system (ANS) activity can modify cardiovascular parameters in response to nociceptive stimuli or drugs in anesthetized animals. The aim of this study was to determine if a surgical nociceptive stimulus and morphine, ketamine, and dobutamine administration would modify ANS activity observed as a change in the mean parasympathetic tone activity (PTAm) in anesthetized horses. In 20 anesthetized horses, heart rate (HR), mean arterial pressure (MAP), and PTAm were monitored before and 1, 3, and 5 min after surgical incision, and before and 10 min after the administration of morphine (0.2 mg/kg IV). If nystagmus or spontaneous ventilation was observed, ketamine (0.5 mg/kg IV) was given, and the three variables were registered before and 3 and 5 min afterward. If MAP reached ≤ 62 mmHg, a dobutamine infusion was administered, and the three variables were recorded before and 5 min after starting/increasing the infusion (0.25 μg/kg/min IV every 5 min). The three variables were registered before and 1, 3, and 5 min after a PTAm decrease of ≥ 20%, HR increase of ≥ 10%, or MAP increase of ≥ 20%. The PTAm decreased 3 min after the administration of ketamine and 1 min after a PTA event. The surgical incision, dobutamine, and morphine did not modify PTAm. The absence of changes in ANS activity after the nociceptive stimulus and lack of correlation between PTAm and HR or MAP suggest that PTAm is a poor indicator of sympathetic activation under the study conditions. Ketamine seems to affect ANS activity by decreasing PTAm

    Evaluation of a lime-mediated sewage sludge stabilisation process. Product characterisation and technological validation for its use in the cement industry

    Get PDF
    This paper describes an industrial process for stabilising sewage sludge (SS) with lime and evaluates the viability of the stabilised product, denominated Neutral, as a raw material for the cement industry. Lime not only stabilised the sludge, raised the temperature of the mix to 80-100 °C, furthering water evaporation, portlandite formation and the partial oxidation of the organic matter present in the sludge. Process mass and energy balances were determined. Neutral, a white powder consisting of portlandite (49.8%), calcite (16.6%), inorganic oxides (13.4%) and organic matter and moisture (20.2%), proved to be technologically apt for inclusion as a component in cement raw mixes. In this study, it was used instead of limestone in raw mixes clinkerised at 1400, 1450 and 1500 °C. These raw meals exhibited greater reactivity at high temperatures than the limestone product and their calcination at 1500 °C yielded clinker containing over 75% calcium silicates, the key phases in Portland clinker. Finally, the two types of raw meal (Neutral and limestone) were observed to exhibit similar mineralogy and crystal size and distribution. © 2011.Peer Reviewe

    Magnetic Fields in the Milky Way

    Full text link
    This chapter presents a review of observational studies to determine the magnetic field in the Milky Way, both in the disk and in the halo, focused on recent developments and on magnetic fields in the diffuse interstellar medium. I discuss some terminology which is confusingly or inconsistently used and try to summarize current status of our knowledge on magnetic field configurations and strengths in the Milky Way. Although many open questions still exist, more and more conclusions can be drawn on the large-scale and small-scale components of the Galactic magnetic field. The chapter is concluded with a brief outlook to observational projects in the near future.Comment: 22 pages, 5 figures, to appear in "Magnetic Fields in Diffuse Media", eds. E.M. de Gouveia Dal Pino and A. Lazaria

    Volume I. Introduction to DUNE

    Get PDF
    The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay—these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. This TDR is intended to justify the technical choices for the far detector that flow down from the high-level physics goals through requirements at all levels of the Project. Volume I contains an executive summary that introduces the DUNE science program, the far detector and the strategy for its modular designs, and the organization and management of the Project. The remainder of Volume I provides more detail on the science program that drives the choice of detector technologies and on the technologies themselves. It also introduces the designs for the DUNE near detector and the DUNE computing model, for which DUNE is planning design reports. Volume II of this TDR describes DUNE\u27s physics program in detail. Volume III describes the technical coordination required for the far detector design, construction, installation, and integration, and its organizational structure. Volume IV describes the single-phase far detector technology. A planned Volume V will describe the dual-phase technology

    TESS Delivers Five New Hot Giant Planets Orbiting Bright Stars from the Full-frame Images

    Get PDF
    We present the discovery and characterization of five hot and warm Jupiters - TOI-628 b (TIC 281408474; HD 288842), TOI-640 b (TIC 147977348), TOI-1333 b (TIC 395171208, BD+47 3521A), TOI-1478 b (TIC 409794137), and TOI-1601 b (TIC 139375960) - based on data from NASA's Transiting Exoplanet Survey Satellite (TESS). The five planets were identified from the full-frame images and were confirmed through a series of photometric and spectroscopic follow-up observations by the TESS Follow-up Observing Program Working Group. The planets are all Jovian size (R P = 1.01-1.77 R J) and have masses that range from 0.85 to 6.33 M J. The host stars of these systems have F and G spectral types (5595 ≤ T eff ≤ 6460 K) and are all relatively bright (9.5 1.7 R J, possibly a result of its host star's evolution) and resides on an orbit with a period longer than 5 days. TOI-628 b is the most massive, hot Jupiter discovered to date by TESS with a measured mass of 6.31-0.30+0.28 M J and a statistically significant, nonzero orbital eccentricity of e = 0.074-0.022+0.021. This planet would not have had enough time to circularize through tidal forces from our analysis, suggesting that it might be remnant eccentricity from its migration. The longest-period planet in this sample, TOI-1478 b (P = 10.18 days), is a warm Jupiter in a circular orbit around a near-solar analog. NASA's TESS mission is continuing to increase the sample of well-characterized hot and warm Jupiters, complementing its primary mission goals

    Molecular biology of baculovirus and its use in biological control in Brazil

    Full text link
    corecore