3,325 research outputs found
A modern control approach to the design of the SPS control system
The structural dynamics of the solar power satellite were considered. The requirements on the vibration of the microwave antenna and the possibility of thermal induced vibration and severe structural-thermal interactions were considered. The possibility of using an active control system and modern control methods to mitigate structural problems is discussed
The effect of wall cooling on a compressible turbulent boundary layer
Experimental results are presented for two turbulent boundary-layer experiments conducted at a free-stream Mach number of 4 with wall cooling. The first experiment examines a constant-temperature cold-wall boundary layer subjected to adverse and favourable pressure gradients. It is shown that the boundary-layer data display good agreement with Coles’ general composite boundary-layer profile using Van Driest's transformation. Further, the pressure-gradient parameter β_K found in previous studies to correlate adiabatic high-speed data with low-speed data also correlates the present cooled-wall high-speed data. The second experiment treats the response of a constant-pressure high-speed boundary layer to a near step change in wall temperature. It is found that the growth rate of the thermal boundary layer within the existing turbulent boundary layer varies considerably depending upon the direction of the wall temperature change. For the case of an initially cooled boundary layer flowing onto a wall near the recovery temperature, it is found that δ_T ~ x whereas the case of an adiabatic boundary layer flowing onto a cooled wall gives δ_T ~ x^½. The apparent origin of the thermal boundary layer also changes considerably, which is accounted for by the variation in sublayer thicknesses and growth rates within the sublayer
Venting device for pressurized space suit helmet Patent
Venting device for pressurized space suit helmet to eliminate vomit expelled by crewme
All the timelike supersymmetric solutions of all ungauged d=4 supergravities
We determine the form of all timelike supersymmetric solutions of all N
greater or equal than 2, d=4 ungauged supergravities, for N less or equal than
4 coupled to vector supermultiplets, using the $Usp(n+1,n+1)-symmetric
formulation of Andrianopoli, D'Auria and Ferrara and the spinor-bilinears
method, while preserving the global symmetries of the theories all the way. As
previously conjectured in the literature, the supersymmetric solutions are
always associated to a truncation to an N=2 theory that may include
hypermultiplets, although fields which are eliminated in the truncations can
have non-trivial values, as is required by the preservation of the global
symmetry of the theories. The solutions are determined by a number of
independent functions, harmonic in transverse space, which is twice the number
of vector fields of the theory (n+1). The transverse space is flat if an only
if the would-be hyperscalars of the associated N=2 truncation are trivial.Comment: v3: Some changes in the introduction. Version to be published in JHE
The supersymmetric solutions and extensions of ungauged matter-coupled N=1,d=4 supergravity
We find the most general supersymmetric solutions of ungauged N=1,d=4
supergravity coupled to an arbitrary number of vector and chiral
supermultiplets, which turn out to be essentially pp-waves and strings. We also
introduce magnetic 1-forms and their supersymmetry transformations and 2-forms
associated to the isometries of the scalar manifold and their supersymmetry
transformations. Only the latter can couple to BPS objects (strings), in
agreement with our results.Comment: Some misprints and citations correcte
M-Horizons
We solve the Killing spinor equations and determine the near horizon
geometries of M-theory that preserve at least one supersymmetry. The M-horizon
spatial sections are 9-dimensional manifolds with a Spin(7) structure
restricted by geometric constraints which we give explicitly. We also provide
an alternative characterization of the solutions of the Killing spinor
equation, utilizing the compactness of the horizon section and the field
equations, by proving a Lichnerowicz type of theorem which implies that the
zero modes of a Dirac operator coupled to 4-form fluxes are Killing spinors. We
use this, and the maximum principle, to solve the field equations of the theory
for some special cases and present some examples.Comment: 36 pages, latex. Reference added, minor typos correcte
An experiment on the adiabatic compressible turbulent boundary layer in adverse and favourable pressure gradients
A wind-tunnel model was developed to study the two-dimensional turbulent boundary layer in adverse and favourable pressure gradients with out the effects of streamwise surface curvature. Experiments were performed at Mach 4 with an adiabatic wall, and mean flow measurements within the boundary layer were obtained. The data, when viewed in the velocity transformation suggested by Van Driest, show good general agreement with the composite boundary-layer profile developed for the low-speed turbulent boundary layer. Moreover, the pressure gradient parameter suggested by Alber & Coats was found to correlate the data with low-speed results
Supersymmetric solutions of gauged five-dimensional supergravity with general matter couplings
We perform the characterization program for the supersymmetric configurations
and solutions of the , Supergravity Theory coupled to an
arbitrary number of vectors, tensors and hypermultiplets and with general
non-Abelian gaugins. By using the conditions yielded by the characterization
program, new exact supersymmetric solutions are found in the
model for the hyperscalars and with as the gauge group. The
solutions also content non-trivial vector and massive tensor fields, the latter
being charged under the U(1) sector of the gauge group and with selfdual
spatial components. These solutions are black holes with
near horizon geometry in the gauged version of the theory and for the ungauged
case we found naked singularities. We also analyze supersymmetric solutions
with only the scalars of the vector/tensor multiplets and the metric
as the non-trivial fields. We find that only in the null class the scalars
can be non-constant and for the case of constant we refine
the classification in terms of the contributions to the scalar potential.Comment: Minor changes in wording and some typos corrected. Version to appear
in Class. Quantum Grav. 38 page
- …
