34 research outputs found

    Cellular feedback dynamics and multilevel regulation driven by the hippo pathway

    Get PDF
    The Hippo pathway is a dynamic cellular signalling nexus that regulates differentiation and controls cell proliferation and death. If the Hippo pathway is not precisely regulated, the functionality of the upstream kinase module is impaired, which increases nuclear localisation and activity of the central effectors, the transcriptional co-regulators YAP and TAZ. Pathological YAP and TAZ hyperactivity consequently cause cancer, fibrosis and developmental defects. The Hippo pathway controls an array of fundamental cellular processes, including adhesion, migration, mitosis, polarity and secretion of a range of biologically active components. Recent studies highlight that spatio-temporal regulation of Hippo pathway components are central to precisely controlling its context-dependent dynamic activity. Several levels of feedback are integrated into the Hippo pathway, which is further synergized with interactors outside of the pathway that directly regulate specific Hippo pathway components. Likewise, Hippo core kinases also ‘moonlight’ by phosphorylating multiple substrates beyond the Hippo pathway and thereby integrates further flexibility and robustness in the cellular decision-making process. This topic is still in its infancy but promises to reveal new fundamental insights into the cellular regulation of this therapeutically important pathway. We here highlight recent advances emphasising feedback dynamics and multilevel regulation of the Hippo pathway with a focus on mitosis and cell migration, as well as discuss potential productive future research avenues that might reveal novel insights into the overall dynamics of the pathway

    The Hippo pathway in cancer: YAP/TAZ and TEAD as therapeutic targets in cancer

    Get PDF
    Tumorigenesis is a highly complex process, involving many interrelated and cross-acting signalling pathways. One such pathway that has garnered much attention in the field of cancer research over the last decade is the Hippo signalling pathway. Consisting of two antagonistic modules, the pathway plays an integral role in both tumour suppressive and oncogenic processes, generally via regulation of a diverse set of genes involved in a range of biological functions. This review discusses the history of the pathway within the context of cancer and explores some of the most recent discoveries as to how this critical transducer of cellular signalling can influence cancer progression. A special focus is on the various recent efforts to therapeutically target the key effectors of the pathway in both preclinical and clinical settings

    Hippo-Yap/Taz signalling in zebrafish regeneration

    Get PDF
    The extent of tissue regeneration varies widely between species. Mammals have a limited regenerative capacity whilst lower vertebrates such as the zebrafish (Danio rerio), a freshwater teleost, can robustly regenerate a range of tissues, including the spinal cord, heart, and fin. The molecular and cellular basis of this altered response is one of intense investigation. In this review, we summarise the current understanding of the association between zebrafish regeneration and Hippo pathway function, a phosphorylation cascade that regulates cell proliferation, mechanotransduction, stem cell fate, and tumorigenesis, amongst others. We also compare this function to Hippo pathway activity in the regenerative response of other species. We find that the Hippo pathway effectors Yap/Taz facilitate zebrafish regeneration and that this appears to be latent in mammals, suggesting that therapeutically promoting precise and temporal YAP/TAZ signalling in humans may enhance regeneration and hence reduce morbidity

    Label2label: Training a neural network to selectively restore cellular structures in fluorescence microscopy

    Get PDF
    Immunofluorescence (IF) microscopy is routinely used to visualise the spatial distribution of proteins that dictates their cellular function. However, unspecific antibody binding often results in high cytosolic background signals, decreasing the image contrast of a target structure. Recently, convolutional neural networks (CNNs) were successfully employed for image restoration in IF microscopy, but current methods cannot correct for those background signals. We report a new method that trains a CNN to reduce unspecific signals in IF images; we name this method label2label (L2L). In L2L, a CNN is trained with image pairs of two non-identical labels that target the same cellular structure. We show that after L2L training a network predicts images with significantly increased contrast of a target structure, which is further improved after implementing a multi-scale structural similarity loss function. Here, our results suggest that sample differences in the training data decrease hallucination effects that are observed with other methods. We further assess the performance of a cycle generative adversarial network, and show that a CNN can be trained to separate structures in superposed IF images of two targets

    Immune complex-induced apoptosis and concurrent immune complex clearance are anti-inflammatory neutrophil functions

    Get PDF
    International audienceAbstract Persistent neutrophilic inflammation drives host damage in autoimmune diseases that are characterized by abundant immune complexes. Insoluble immune complexes (iICs) potently activate pro-inflammatory neutrophil effector functions. We and others have shown that iICs also promote resolution of inflammation via stimulation of neutrophil apoptosis. We demonstrate here that iICs trigger FcγRIIa-dependent neutrophil macropinocytosis, leading to the rapid uptake, and subsequent degradation of iICs. We provide evidence that concurrent iIC-induced neutrophil apoptosis is distinct from phagocytosis-induced cell death. First, uptake of iICs occurs by FcγRII-stimulated macropinocytosis, rather than phagocytosis. Second, production of reactive oxygen species, but not iIC-internalization is a pre-requisite for iIC-induced neutrophil apoptosis. Our findings identify a previously unknown mechanism by which neutrophils can remove pro-inflammatory iICs from the circulation. Together iIC clearance and iIC-induced neutrophil apoptosis may act to prevent the potential escalation of neutrophilic inflammation in response to iICs

    Mesoscale standing wave imaging

    Get PDF
    Standing wave (SW) microscopy is a method that uses an interference pattern to excite fluorescence from labelled cellular structures and produces high-resolution images of three-dimensional objects in a two-dimensional dataset. SW microscopy is performed with high-magnification, high-numerical aperture objective lenses, and while this results in high-resolution images, the field of view is very small. Here we report upscaling of this interference imaging method from the microscale to the mesoscale using the Mesolens, which has the unusual combination of a low-magnification and high-numerical aperture. With this method, we produce SW images within a field of view of 4.4 mm × 3.0 mm that can readily accommodate over 16,000 cells in a single dataset. We demonstrate the method using both single-wavelength excitation and the multi-wavelength SW method TartanSW. We show application of the method for imaging of fixed and living cells specimens, with the first application of SW imaging to study cells under flow conditions

    Disease and the Hippo Pathway: Cellular and Molecular Mechanisms

    Get PDF
    The Hippo pathway is a highly dynamic cellular signaling nexus that plays central roles in multiple cell types and regulates regeneration, metabolism, and development. The Hippo pathway integrates mechanotransduction, cell polarity, inflammation, and numerous types of paracrine signaling. If not tightly regulated, dysregulated Hippo pathway signaling drives the onset and progression of a range of diseases, including fibrosis and cancer. The molecular understanding of the Hippo pathway is rapidly evolving. This Special Issue contains ten articles contributed by established and up-and-coming Hippo pathway experts that, as a whole, provides an up-to-date overview of how dysregulated Hippo pathway activity is a common driver of specific diseases. The articles have a particular focus on the underlying molecular and cellular mechanisms that cause the Hippo pathway to go awry, and especially how this drives disease. The articles analyze disease-specific as well as common themes, which provides valuable insights into the fundamental molecular mechanisms in the dysfunctioning Hippo pathway, and thereby offer practical insights into potential future therapeutic intervention strategies
    corecore