28 research outputs found

    Marine latitude/altitude OH distributions: Comparison of Pacific Ocean observations with models

    Get PDF
    Reported here are tropical/subtropical Pacific basin OH observational data presented in a latitude/altitude geographical grid. They cover two seasons of the year (spring and fall) that reflect the timing of NASA's PEM-Tropics A (1996) and B (1999) field programs. Two different OH sensors were used to collect these data, and each instrument was mounted on a different aircraft platform (i.e., NASA's P-3B and DC-8). Collectively, these chemical snapshots of the central Pacific have revealed several interesting trends. Only modest decreases (factors of 2 to 3) were found in the levels of OH with increasing altitude (0-12 km). Similarly, only modest variations were found (factors of 1.5 to 3.5) when the data were examined as a function of latitude (30° N to 30° S). Using simultaneously recorded data for CO, O3, H2O, NO, and NMHCs, comparisons with current models were also carried out. For three out of four data subsets, the results revealed a high level of correspondence. On average, the box model results agreed with the observations within a factor of 1.5. The comparison with the three-dimensional model results was found to be only slightly worse. Overall, these results suggest that current model mechanisms capture the major photochemical processes controlling OH quite well and thus provide a reasonably good representation of OH levels for tropical marine environments. They also indicate that the two OH sensors employed during the PEM-Tropics B study generally saw similar OH levels when sampling a similar tropical marine environment. However, a modest altitude bias appears to exist between these instruments. More rigorous instrument intercomparison activity would therefore seem to be justified. Further comparisons of model predictions with observations are also recommended for nontropical marine environments as well as those involving highly elevated levels of reactive non-methane hydrocarbons. Copyright 2001 by the American Geophysical Union

    Rd9 Is a Naturally Occurring Mouse Model of a Common Form of Retinitis Pigmentosa Caused by Mutations in RPGR-ORF15

    Get PDF
    Animal models of human disease are an invaluable component of studies aimed at understanding disease pathogenesis and therapeutic possibilities. Mutations in the gene encoding retinitis pigmentosa GTPase regulator (RPGR) are the most common cause of X-linked retinitis pigmentosa (XLRP) and are estimated to cause 20% of all retinal dystrophy cases. A majority of RPGR mutations are present in ORF15, the purine-rich terminal exon of the predominant splice-variant expressed in retina. Here we describe the genetic and phenotypic characterization of the retinal degeneration 9 (Rd9) strain of mice, a naturally occurring animal model of XLRP. Rd9 mice were found to carry a 32-base-pair duplication within ORF15 that causes a shift in the reading frame that introduces a premature-stop codon. Rpgr ORF15 transcripts, but not protein, were detected in retinas from Rd9/Y male mice that exhibited retinal pathology, including pigment loss and slowly progressing decrease in outer nuclear layer thickness. The levels of rhodopsin and transducin in rod outer segments were also decreased, and M-cone opsin appeared mislocalized within cone photoreceptors. In addition, electroretinogram (ERG) a- and b-wave amplitudes of both Rd9/Y male and Rd9/Rd9 female mice showed moderate gradual reduction that continued to 24 months of age. The presence of multiple retinal features that correlate with findings in individuals with XLRP identifies Rd9 as a valuable model for use in gaining insight into ORF15-associated disease progression and pathogenesis, as well as accelerating the development and testing of therapeutic strategies for this common form of retinal dystrophy

    Why Take Painkillers?

    Get PDF
    Accounts of the nature of unpleasant pain have proliferated over the past decade, but there has been little systematic investigation of which of them can accommodate its badness. This paper is such a study. In its sights are two targets: those who deny the non-instrumental disvalue of pain's unpleasantness; and those who allow it but deny that it can be accommodated by the view—advanced by me and others—that unpleasant pains are interoceptive experiences with evaluative content. Against the former, I argue that pain's unpleasantness does indeed have noninstrumental disvalue; against the latter I argue both that my critics’ own desire-theoretic accounts of pain's unpleasantness cannot accommodate such disvalue, and that my evaluativist view can—either by appealing to “anti-unpleasantness” desires or by exploiting pain's perceptuality

    Analysis of retinal histology in Rd9 and wild-type mice.

    No full text
    <p><b>A</b>) Photographs of plastic retina sections from Rd9/Y and B6 mice at the ages indicated. Morphometric analysis showing <b>B</b>) outer plus inner segment (OS+IS), and <b>C</b>) outer nuclear layer (ONL) thickness, in mice at 12 months-of-age. Thickness measurements were taken on sections parallel (superior/inferior) or orthogonal (nasal/temporal) to the vertical meridian of eyes from Rd9/Y (â—‹) and B6 (â–Ş) mice and plotted vs. distance from the optic nerve head, with standard deviations shown.</p

    Immunohistochemical analysis of Rpgr in mutant and wild-type mice.

    No full text
    <p>Cryosections of eyes from 2-month-old B6, Rd9, and <i>Rpgr</i>-KO male mice were probed with S1 antibody that recognizes a sequence common to both Rpgr ORF15 and 1–19 variants, and S3 antibody that recognizes a sequence unique to the 1–19 variant. Red shows Rpgr-specific staining; blue shows DAPI staining of nuclei.</p
    corecore