419 research outputs found

    Impact melt breccias at the Apollo 17 landing site

    Get PDF
    Impact melt breccias are by far the most common highland rock type collected on the Apollo 17 mission. They tend to be fine grained, with virtually no clast-free impact melt rocks having been identified. All the highland boulders sampled are impact melt breccia, with the possible exception of one South Massif boulder that might have a friable matrix (but nonetheless consists dominantly of impact melt) and a shocked igneous norite boulder from the North Massif. The impact melt breccias were originally described as metaclastic, but their melt origin became apparent as work progressed. Chemical compositions appear to allow natural groupings of the impact melt breccias. Various groupings of the impact melt breccias are discussed

    Coincidences in time of the Imbrium Basin impact and Apollo 15 KREEP volcanic series: Impact-induced melting?

    Get PDF
    On the Earth there may be no firm evidence that impacts can induce volcanic activity. However, the Moon does provide a very likely example of volcanism induced by an immense impact: the Imbrium Basin-forming event was immediately succeeded by a crustal partial melting event that released KREEP lava flows over a wide area. These two events are presently indistinguishable in radiometric age. The sample record indicates that such KREEP volcanism had not occurred in the region prior to that time, and never occurred again. Such coincidence in time implies a genetic relationship between the two events, and impact-induced partial melting appears to be the only candidate process. This conclusion rests essentially on the arguments that: (1) the Imbrium Basin event took place 3.86 +/- 0.02 Ga ago; (2) the Apennine Bench Formation postdates Imbrium; (3) the Apollo 15 KREEP basalts are 3.85 +/- 0.03 Ga old; (4) the Apollo 15 KREEP basalts are derived from the Apennine Bench Formation; and (5) the Apollo 15 KREEP basalts are volcanic. Thus, the Apollo 15 KREEP basalts represent a unique volcanic unit that immediately postdates the Imbrium event (within 20 Ma, possibly much less). The evidence for the links in the argument are sketched, and some implications for initial conditions are described. Ramifications of the process for the early history of the Earth are briefly explored

    The Apollo 17 samples: The Massifs and landslide

    Get PDF
    More than 50 kg of rock and regolith samples, a little less than half the total Apollo 17 sample mass, was collected from the highland stations at Taurus-Littrow. Twice as much material was collected from the North Massif as from the South Massif and its landslide (the apparent disproportionate collecting at the mare sites is mainly a reflection of the large size of a few individual basalt samples). Descriptions of the collection, documentation, and nature of the samples are given. A comprehensive catalog is currently being produced. Many of the samples have been intensely studied over the last 20 years and some of the rocks have become very familiar and depicted in popular works, particularly the dunite clast (72415), the troctolite sample (76535), and the station 6 boulder samples. Most of the boulder samples have been studied in Consortium mode, and many of the rake samples have received a basic petrological/geochemical characterization

    The Apollo 15 coarse fines (4-10 mm)

    Get PDF
    A new catalog of the Apollo 15 coarse fines particles is presented. Powell's macroscopic descriptions, resulting from his 1972 particle by particle binocular examination of all of the Apollo 15 4 to 10 mm fines samples, are retained. His groupings are also retained, but petrographic, chemical, and other data from later analyses are incorporated into this catalog to better characterize individual particles and describe the groups. A large number of particles have no characterization beyond that done by Powell. Complete descriptions of the particles and all known references are provided. The catalog is intended for anyone interested in the rock types collected by Dave Scott and Jim Irwin in the Hadley-Appenine region, and particularly for researchers requiring sample allocations

    Apollo 15 impact melts, the age of Imbrium, and the Earth-Moon impact cataclysm

    Get PDF
    The early impact history of the lunar surface is of critical importance in understanding the evolution of both the primitive Moon and the Earth, as well as the corresponding populations of planetesimals in Earth-crossing orbits. Two endmember hypotheses call for greatly dissimilar impact dynamics. One is a heavy continuous (declining) bombardment from about 4.5 Ga to 3.85 Ga. The other is that an intense but brief bombardment at about 3.85 +/- Ga was responsible for producing the visible lunar landforms and for the common 3.8-3.9 Ga ages of highland rocks. The Apennine Front, the main topographic ring of the Imbrium Basin, was sampled on the Apollo 15 mission. The Apollo 15 impact melts show a diversity of chemical compositions, indicating their origin in at least several different impact events. The few attempts at dating them have generally not produced convincing ages, despite their importance. Thus, we chose to investigate the ages of melt rock samples from the Apennine Front, because of their stratigraphic importance yet lack of previous age definition

    The Unique Significance and Origin of the Cretaceous-Tertiary Boundary: Historical Context and Burdens of Proof

    Get PDF
    The abruptness and intensity of the Cretaceous-Tertiary boundary have been deemphasized by some authors over recent years, mainly by those skeptical of an impact origin for the boundary. However, it was recognized at the birth of stratigraphy as both abrupt and of major importance. It was used to define the change from the Mesozoic to the Cenozoic; the boundary has become continually more precisely defined and its global sequences more correlatable. It is now unique in being an event boundary marked by an iridium-bearing layer of global extent, rather than an arbitrary boundary in a sequence of little change. The Permian-Triassic boundary, in contrast, is arbitrary and the transition is not yet proven to be abrupt, the extinctions that define it perhaps having taken place in pulses over several millions of years. Some of those who have denied the importance (and in some cases even the existence) of an impact in the Cretaceous-Tertiary extinctions have placed burdens of proof on the impact hypothesis that they do not place on strictly terrestrial mechanisms. Terrestrial mechanisms have always been unsatisfactory (or at least unconvincing for global, massive, multienvironment faunal change) and are now even more so. Some authors have required of the impact hypothesis attributes that are not inherent in it, including particular patterns of extinction selectivity and timing

    An Apollo 15 Mare Basalt Fragment and Lunar Mare Provinces

    Get PDF
    Lunar sample 15474,4 is a tiny fragment of olivine-augite vitrophyre that is a mare basalt. Although petroraphically distinct from all other Apollo 15 samples, it has been ignored since its first brief description. Our new petrographic and mineral chemical data show that the olivines and pyroxenes are distinct from those in other basalts. The basalt cooled and solidified extremely rapidly; some of the olivine might be cumulate or crystallized prior to extrusion. Bulk-chemical data show that the sample is probably similar to an evolved Apollo 15 olivine-normative basalt in major elements but is distinct in its rare earth element pattern. Its chemical composition and petrography both show that 15474,4 cannot be derived from other Apollo 15 mare basalts by shallow-level crystal fractionation. It represents a distinct extrusion of magma. Nonetheless, the chemical features that 15474,4 has in common with other Apollo 15 mare basalts, including the high FeO/Sc, the general similarity of the rare earth element pattern, and the common (and chondritic) TiO2/Sm ratio, emphasize the concept of a geochemical province at the Apollo 15 site that is distinct from basalts and provinces elsewhere. In making a consistent picture for the derivation of all of the Apollo 15 basalts, both the commonalities and the differences among the basalts must be explained. The Apollo 15 commonalities and differences suggest that the sources must have consisted of major silicate phases with the same composition but with varied amounts of a magma trapped from a contemporary magma ocean. They probably had a high olivine/pyroxene ratio and underwent small and reasonably consistent degrees of partial melting to produce the basalts. These inferences may be inconsistent with models that suggest greatly different depths of melting among basalts, primitive sources for the green glasses, or extensive olivine fractionation during ascent. An integrated approach to lunar mare provinces, of which the Apollo 15 mare basalts constitute only one, offers advances in our understanding of the physical and chemical processes of source formation and mare production but has so far not been utilized

    Lithologies contributing to the clast population in Apollo 17 LKFM basaltic impact melts

    Get PDF
    LKFM basaltic impact melts are abundant among Apollo lunar samples, especially those from Apollo 15, 16, and 17. They are generally basaltic in composition, but are found exclusively as impact melts. They seem to be related to basins and so could represent the composition of the lower lunar crust. They contain lithic clasts that cannot be mixed in any proportion to produce the composition of the melt matrix; components rich in transition elements (Ti, Cr, Sc) and REE are not considered. To search for the mysterious cryptic component, we previously investigated the mineral clast population in two Apollo 14 LKFM basaltic impact melts, 15445 and 15455. The cryptic component was not present in the mineral clast assemblage of these breccias either, but some olivine and pyroxene grains appeared to be from lithologies not represented among identified igneous rocks from the lunar highlands. In addition, none of the mineral clasts could be unambiguously assigned to a ferroan anorthosite source. We have now extended this study to Apollo 17, starting with two LKFM impact melt breccias (76295 and 76315) from the Apollo 17 station 6 boulder. The results from the study are presented

    Workshop on New Views of the Moon: Integrated Remotely Sensed, Geophysical, and Sample Datasets

    Get PDF
    It has been more than 25 years since Apollo 17 returned the last of the Apollo lunar samples. Since then, a vast amount of data has been obtained from the study of rocks and soils from the Apollo and Luna sample collections and, more recently, on a set of about a dozen lunar meteorites collected on Earth. Based on direct studies of the samples, many constraints have been established for the age, early differentiation, crust and mantle structure, and subsequent impact modification of the Moon. In addition, geophysical experiments at the surface, as well as remote sensing from orbit and Earth-based telescopic studies, have provided additional datasets about the Moon that constrain the nature of its surface and internal structure. Some might be tempted to say that we know all there is to know about the Moon and that it is time to move on from this simple satellite to more complex objects. However, the ongoing Lunar Prospector mission and the highly successful Clementine mission have provided important clues to the real geological complexity of the Moon, and have shown us that we still do not yet adequately understand the geologic history of Earth's companion. These missions, like Galileo during its lunar flyby, are providing global information viewed through new kinds of windows, and providing a fresh context for models of lunar origin, evolution, and resources, and perhaps even some grist for new questions and new hypotheses. The probable detection and characterization of water ice at the poles, the extreme concentration of Th and other radioactive elements in the Procellarum-Imbrium-Frigon's resurfaced areas of the nearside of the Moon, and the high-resolution gravity modeling enabled by these missions are examples of the kinds of exciting new results that must be integrated with the extant body of knowledge based on sample studies, in situ experiments, and remote-sensing missions to bring about the best possible understanding of the Moon and its history
    corecore