35,831 research outputs found

    Achieving Consistent Doppler Measurements from SDO/HMI Vector Field Inversions

    Full text link
    NASA's Solar Dynamics Observatory is delivering vector field observations of the full solar disk with unprecedented temporal and spatial resolution; however, the satellite is in a highly inclined geostationary orbit. The relative spacecraft-Sun velocity varies by ±3\pm3~km/s over a day which introduces major orbital artifacts in the Helioseismic Magnetic Imager data. We demonstrate that the orbital artifacts contaminate all spatial and temporal scales in the data. We describe a newly-developed three stage procedure for mitigating these artifacts in the Doppler data derived from the Milne-Eddington inversions in the HMI Pipeline. This procedure was applied to full disk images of AR11084 to produce consistent Dopplergrams. The data adjustments reduce the power in the orbital artifacts by 31dB. Furthermore, we analyze in detail the corrected images and show that our procedure greatly improve the temporal and spectral properties of the data without adding any new artifacts. We conclude that this new and easily implemented procedure makes a dramatic improvement in the consistency of the HMI data and in its usefulness for precision scientific studies.Comment: 58 pages, 19 figures, submitted to Ap

    Dynamics of a two-level system strongly coupled to a high-frequency quantum oscillator

    Get PDF
    Recent experiments on quantum behavior in microfabricated solid-state systems suggest tantalizing connections to quantum optics. Several of these experiments address the prototypical problem of cavity quantum electrodynamics: a two-level system coupled to a quantum harmonic oscillator. Such devices may allow the exploration of parameter regimes outside the near-resonance and weak-coupling assumptions of the ubiquitous rotating-wave approximation (RWA), necessitating other theoretical approaches. One such approach is an adiabatic approximation in the limit that the oscillator frequency is much larger than the characteristic frequency of the two-level system. A derivation of the approximation is presented and the time evolution of the two-level-system occupation probability is calculated using both thermal- and coherent-state initial conditions for the oscillator. Closed-form evaluation of the time evolution in the weak-coupling limit provides insight into the differences between the thermal- and coherent-state models. Finally, potential experimental observations in solid-state systems, particularly the Cooper-pair box--nanomechanical resonator system, are discussed and found to be promising.Comment: 16 pages, 11 figures; revised abstract; some text revisions; added two figures and combined others; added references. Submitted to Phys. Rev.

    A model of ant route navigation driven by scene familiarity

    Get PDF
    In this paper we propose a model of visually guided route navigation in ants that captures the known properties of real behaviour whilst retaining mechanistic simplicity and thus biological plausibility. For an ant, the coupling of movement and viewing direction means that a familiar view specifies a familiar direction of movement. Since the views experienced along a habitual route will be more familiar, route navigation can be re-cast as a search for familiar views. This search can be performed with a simple scanning routine, a behaviour that ants have been observed to perform. We test this proposed route navigation strategy in simulation, by learning a series of routes through visually cluttered environments consisting of objects that are only distinguishable as silhouettes against the sky. In the first instance we determine view familiarity by exhaustive comparison with the set of views experienced during training. In further experiments we train an artificial neural network to perform familiarity discrimination using the training views. Our results indicate that, not only is the approach successful, but also that the routes that are learnt show many of the characteristics of the routes of desert ants. As such, we believe the model represents the only detailed and complete model of insect route guidance to date. What is more, the model provides a general demonstration that visually guided routes can be produced with parsimonious mechanisms that do not specify when or what to learn, nor separate routes into sequences of waypoints

    Diurnal variation in harbour porpoise detection – potential implications for management

    Get PDF
    Peer reviewedPublisher PD

    Developing a model of technology acceptance within the Australian healthcare sector

    Get PDF
    The research reported in this paper elucidates the development, empirical validation and preliminary analysis of a model of technology acceptance by Australian occupational therapists. The study described involved the collection of quantitative and qualitative data through a national survey and a longitudinal multi-method case study within a communitybased healthcare organisation. The theoretical significance of this work is that it uses a thoroughly constructed research model, with potentially the largest sample size ever tested (2000+), to extend technology acceptance research into the health sector. Results provide support for the proposed model. This work reveals the complexity of the constructs and relationships that influence technology acceptance and highlights a need for reconceptualising current models. Results also demonstrate the importance of qualitative methodologies in information systems research. The significance and implications of the findings are discussed
    corecore